Catalysis Letters

, Volume 144, Issue 10, pp 1667–1673 | Cite as

Theoretical Study of Carbon Adsorption on Re Surfaces: Morphological Instability

  • Payam Kaghazchi
  • Timo Jacob
  • Xiaofang Yang
  • Grant Junno
  • Hao Wang
  • Wenhua Chen
  • Bruce E. Koel
  • Robert A. Bartynski
Article

Abstract

We report results from new experiments on C/Re(\(11\bar{2}1\)) to identify threshold conditions for morphological instability of Re(\(11\bar{2}1\)). We have found that adsorption of carbon from 0.35 to 0.85 ML (0.3–6.0 L exposure of C2H2) at T ≥ 800 K leads to faceting of Re(\(11\bar{2}1\)) with formation of three-sided pyramids. Using density functional theory we have investigated binding sites and binding energies of C on planar and faceted Re surfaces as well as generated a surface phase diagram of C/Re to obtain an atomistic understanding of C-induced pyramidal faceting of Re(\(11\bar{2}1\)). The calculations reveal that at low to intermediate coverage, C atoms prefer binding at four-fold sites on the Re surfaces and formation of three-sided pyramids is thermodynamically favored.

Graphical Abstract

Using density functional theory and thermodynamic considerations as well as AES and LEED measurements we studied the structure of Re(11–21) surfaces in contact with C2H2. The experiments show that adsorption of carbon from 0.35 to 0.85 ML (0.3–6.0 L exposure of C2H2) at T ≥ 800 K leads to faceting of Re(11–21) with formation of three-sided pyramids. The calculations reveal that at low to intermediate coverage, C atoms prefer binding at four-fold sites on the Re surfaces and formation of three-sided pyramids is thermodynamically favored.

Keywords

Rhenium Faceting Carbon Surface morphology Surface phase diagram 

References

  1. 1.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295:2053CrossRefGoogle Scholar
  2. 2.
    Newton MA, Belver-Coldeira C, Martínez-Arias A, Fernández-García M (2007) Nat Mater 6:528CrossRefGoogle Scholar
  3. 3.
    Nolte P, Stierle A, Jin-Phillipp NY, Kasper N, Schulli TU, Dosch H (2008) Science 321:1654CrossRefGoogle Scholar
  4. 4.
    Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097CrossRefGoogle Scholar
  5. 5.
    Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10CrossRefGoogle Scholar
  6. 6.
    Somorjai GA, Kliewer CJ (2009) React Kinet Catal Lett 96:191CrossRefGoogle Scholar
  7. 7.
    Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Nat Mater 8:132CrossRefGoogle Scholar
  8. 8.
    Woodruff DP (1994) J Phys 6:6067Google Scholar
  9. 9.
    Chen Q, Richardson NV (2003) Prog Surf Sci 73:59CrossRefGoogle Scholar
  10. 10.
    Madey TE, Chen W, Wang H, Kaghazchi P, Jacob T (2008) Chem Soc Rev 37:2310CrossRefGoogle Scholar
  11. 11.
    Chen W, Wang H, Bartynski RA (2014) In: Wu Z, Overbury SH (eds) Catalysis by materials with well-defined structures. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Tontegode AY (1991) Prog Surf Sci 38:201CrossRefGoogle Scholar
  13. 13.
    Kvon RI, Ivanov EA, Boronin AI (1998) React Kinet Catal Lett 65:381CrossRefGoogle Scholar
  14. 14.
    Zhang Q-M, Wells JC, Gong XG, Zhang Z (2004) Phys Rev B 69:205413CrossRefGoogle Scholar
  15. 15.
    Nikolla E, Holewinski A, Schwank J, Linic S (2006) J Am Chem Soc 128:11354CrossRefGoogle Scholar
  16. 16.
    Viñes F, Neyman KM, Görling A (2009) J Phys Chem A 113:11963CrossRefGoogle Scholar
  17. 17.
    Tan KF, Xu J, Chang J, Borgna A, Saeys M (2010) J Catal 274:121CrossRefGoogle Scholar
  18. 18.
    Weststrate CJ, Kızılkaya AC, Rossen ETR, Verhoeven MWGM, Ciobîcă IM, Saib AM, Niemantsverdriet JW (2012) J Phys Chem C 116:11575CrossRefGoogle Scholar
  19. 19.
    Moodley DJ, van de Loosdrecht J, Saib AM, Niemantsverdriet HJW (2010) In: Davis BH, Occelli ML (eds) Advances in Fischer–Tropsch synthesis, catalysts, and catalysis. CRC Press, Boca RatonGoogle Scholar
  20. 20.
    Chen W, Shen Q, Bartynski RA, Kaghazchi P, Jacob T (2013) Langmuir 29:1113CrossRefGoogle Scholar
  21. 21.
    Lang B (1975) Surf Sci 53:317CrossRefGoogle Scholar
  22. 22.
    Thapliyal HV, Blakely JM (1978) J Vac Sci Technol 15:600CrossRefGoogle Scholar
  23. 23.
    Castner DG, Somorjai GA (1979) Surf Sci 83:60CrossRefGoogle Scholar
  24. 24.
    Yang X, Koel BE, Wang H, Chen W, Bartynski RA (2012) ACS Nano 6:1404CrossRefGoogle Scholar
  25. 25.
    Goris B, Bals S, Broek WVD, Carbó-Argibay E, Gómez-Graña S, Liz-Marzán LM, Tendeloo GV (2012) Nat Mater 11:930CrossRefGoogle Scholar
  26. 26.
    Chen W, Ermanoski I, Madey TE (2005) J Am Chem Soc 127:5014CrossRefGoogle Scholar
  27. 27.
    Barnes R, Abdelrehim IM, Madey TE (2001) Top Catal 14:53CrossRefGoogle Scholar
  28. 28.
    Chan ASY, Chen W, Wang H, Rowe JE, Madey TE (2004) J Phys Chem B 108:14643CrossRefGoogle Scholar
  29. 29.
    Chen W, Madey TE, Stottlemyer AL, Chen JG, Kaghazchi P, Jacob T (2008) J Phys Chem C 112:19113CrossRefGoogle Scholar
  30. 30.
    Chen W, Shen Q, Bartynski RA, Kaghazchi P, Jacob T (2010) ChemPhysChem 11:2515CrossRefGoogle Scholar
  31. 31.
    Chen W, Bartynski RA, Kaghazchi P, Jacob T (2012) J Chem Phys 136:224701CrossRefGoogle Scholar
  32. 32.
    Chabanas M, Baudouin A, Copéret C, Basset J-M (2001) J Am Chem Soc 123:2062CrossRefGoogle Scholar
  33. 33.
    Bussell ME, Gellman AJ, Somorjai GA (1988) J Catal 110:423CrossRefGoogle Scholar
  34. 34.
    Asscher M, Carrazza J, Khan MM, Lewis KB, Somorjai GA (1986) J Catal 98:277CrossRefGoogle Scholar
  35. 35.
    Yang X, Hu J, Wu R, Koel BE (2010) J Phys Chem Lett 1:2493CrossRefGoogle Scholar
  36. 36.
    Yang X, Hu J, Fu J, Wu R, Koel BE (2011) Angew Chem Int Ed 50:10182CrossRefGoogle Scholar
  37. 37.
    Wang H, Chen W, Madey TE (2006) Phys Rev B 74:205426CrossRefGoogle Scholar
  38. 38.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys 14:2717Google Scholar
  39. 39.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  41. 41.
    Kaghazchi P, Jacob T, Ermanoski I, Chen W, Madey TE (2008) ACS Nano 2:1280CrossRefGoogle Scholar
  42. 42.
    Wang H, Chen W, Bartynski RA, Kaghazchi P, Jacob T (2014) J Chem Phys 140:024707CrossRefGoogle Scholar
  43. 43.
    Shen Q, Chen W, Wang H, Bartynski RA (2013) J Chem Phys 139:084707CrossRefGoogle Scholar
  44. 44.
    Dietrich H, Geng P, Jacobi K, Ertl G (1996) J Chem Phys 104:375CrossRefGoogle Scholar
  45. 45.
    Reyhan M, Wang H, Madey TE (2009) Catal Lett 129:46CrossRefGoogle Scholar
  46. 46.
    Wang H (2008) Adsorbate-induced nanoscale faceting of rhenium surfaces. PhD thesis, Rutgers UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Payam Kaghazchi
    • 1
  • Timo Jacob
    • 2
  • Xiaofang Yang
    • 3
  • Grant Junno
    • 4
  • Hao Wang
    • 4
  • Wenhua Chen
    • 4
  • Bruce E. Koel
    • 3
  • Robert A. Bartynski
    • 4
  1. 1.Institute for Chemistry and BiochemistryFree University BerlinBerlinGermany
  2. 2.Institute of ElectrochemistryUlm UniversityUlmGermany
  3. 3.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  4. 4.Department of Physics and Astronomy, and Laboratory for Surface Modification, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations