Catalysis Letters

, Volume 144, Issue 10, pp 1661–1666 | Cite as

Ceria Prepared by Flame Spray Pyrolysis as an Efficient Catalyst for Oxidation of Diesel Soot

  • Jakob M. Christensen
  • Davide Deiana
  • Jan-Dierk Grunwaldt
  • Anker D. JensenEmail author


Ceria has been prepared by flame spray pyrolysis and tested for activity in catalytic soot oxidation. In tight contact with soot the oxidation activity (measured in terms of the temperature of maximal oxidation rate, Tmax) of the flame made ceria is among the highest reported for CeO2. This can to a significant degree be ascribed to the large surface area achieved with the flame spray pyrolysis method. The importance of the inherent soot reactivity for the catalytic oxidation was studied using various soot samples, and the reactivity of the soot was found to have a significant impact, as the Tmax-value for oxidation in tight contact with a catalyst scaled linearly with the Tmax-value in non-catalytic soot oxidation. The Tmax-value in non-catalytic soot oxidation was in turn observed to scale linearly with the H/C ratio of the carbonaceous materials.

Graphical Abstract


Ceria Soot oxidation Flame spray pyrolysis Nanoparticles 



Financial support from The Danish Council for Strategic Research (DSF) is gratefully acknowledged (Grant no. 2106-08-0039). Martin Høj and Brian Brun Hansen are gratefully acknowledged for aid in connection with the experimental work.

Supplementary material

10562_2014_1319_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3924 kb)


  1. 1.
    Ris C (2007) Inhal Toxicol 19:229–239CrossRefGoogle Scholar
  2. 2.
    Chameides WL, Bergin M (2002) Science 297:2214–2215CrossRefGoogle Scholar
  3. 3.
    Kerr RA (2013) Science 339:382CrossRefGoogle Scholar
  4. 4.
    Frank B, Schuster M, Schlögl R, Su DS (2013) Angew Chem Int Ed 52:2673–2677CrossRefGoogle Scholar
  5. 5.
    Kittelson DB (1998) J Aerosol Sci 29:575–588CrossRefGoogle Scholar
  6. 6.
    Andreae MO, Ramanathan V (2013) Science 340:280–281CrossRefGoogle Scholar
  7. 7.
    Van Setten BAAL, Makkee M, Moulijn JA (2001) Catal Rev Sci Eng 43:489–564CrossRefGoogle Scholar
  8. 8.
    Adler J (2005) Int J Appl Ceram Technol 2:429–439CrossRefGoogle Scholar
  9. 9.
    Stamatelos AM (1997) Energy Conserv Manag 38:83–99CrossRefGoogle Scholar
  10. 10.
    Southward BWL, Basso S (2008) SAE paper: 2008-01-0481Google Scholar
  11. 11.
    Neeft J, Makkee M, Moulijn JA (1996) Chem Eng J 64:295–302Google Scholar
  12. 12.
    Konstandopoulos AG, Lorentzou S, Pagkoura C, Ohno K, Ogyu K, Oya T (2007) SAE paper: 2007-01-1950Google Scholar
  13. 13.
    Konstandopoulos AG, Papaioannou E (2008) Kona 26:36–65CrossRefGoogle Scholar
  14. 14.
    Konstandopolous A, Papaioannou E, Zarvalis D, Skopa S, Baltzopoulou P, Kladopoulou E, Kostoglou M, Lorentzou S (2005) SAE paper: 2005-01-0670Google Scholar
  15. 15.
    Kumar PA, Tanwar MD, Bensaid S, Russo N, Fino D (2012) Chem Eng J 207–208:258–266CrossRefGoogle Scholar
  16. 16.
    Trovarelli A (1996) Catal Rev Sci Eng 38:439–520CrossRefGoogle Scholar
  17. 17.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367CrossRefGoogle Scholar
  18. 18.
    Bueno-López A (2014) Appl Catal B 146:1–11CrossRefGoogle Scholar
  19. 19.
    Herbst K, Mogensen G, Huber F, Østberg M, Skjøth-Rasmussen MS (2010) Catal Today 157:297–302CrossRefGoogle Scholar
  20. 20.
    McKee DW (1985) Carbon 23:707–713CrossRefGoogle Scholar
  21. 21.
    Strobel R, Baiker A, Pratsinis SE (2006) Adv Powder Technol 17:457–480CrossRefGoogle Scholar
  22. 22.
    Schimmoeller B, Pratsinis SE, Baiker A (2011) ChemCatChem 3:1234–1256CrossRefGoogle Scholar
  23. 23.
    Mädler L, Stark WJ, Pratsinis SE (2002) J Mater Res 17:1356–1362CrossRefGoogle Scholar
  24. 24.
    Stark WJ, Maciejewski M, Mädler L, Pratsinis SE, Baiker A (2003) J Catal 220:35–43CrossRefGoogle Scholar
  25. 25.
    Wagloehner S, Baer JN, Kureti S (2014) Appl Catal B 147:1000–1008CrossRefGoogle Scholar
  26. 26.
    Summers JC, Van Houtte S, Psaras D (1996) Appl Catal B 10:139–156CrossRefGoogle Scholar
  27. 27.
    Lahaye J, Boehm S, Chambrion PH, Ehrburger P (1996) Combust Flame 104:199–207CrossRefGoogle Scholar
  28. 28.
    Pattas K, Samaras Z, Sherwood D, Umehara K, Cantiani C, Chariol OA, Barthe P, Lemaire J (1992) SAE paper: 920363Google Scholar
  29. 29.
    Lepperhoff G, Lüders H, Barthe P, Lemaire J (1995) SAE paper: 950369Google Scholar
  30. 30.
    Song J, Wang J, Boehman AL (2006) Combust Flame 146:73–84CrossRefGoogle Scholar
  31. 31.
    Stanmore BR, Brilhac JF, Gilot P (2001) Carbon 39:2247–2268CrossRefGoogle Scholar
  32. 32.
    Harlé V, Pitois C, Rocher L, Garcia F (2008) SAE paper: 2008-01-0331Google Scholar
  33. 33.
    Lee KO, Song J (2007) SAE paper: 2007-01-1943Google Scholar
  34. 34.
    Høj M, Linde K, Hansen TK, Brorson M, Jensen AD, Grunwaldt J-D (2011) Appl Catal A 397:201–208CrossRefGoogle Scholar
  35. 35.
    Mädler L, Kammler H, Mueller R, Pratsinis S (2002) J Aerosol Sci 33:369–389CrossRefGoogle Scholar
  36. 36.
    Ernst FO, Büchel R, Strobel R, Pratsinis SE (2008) Chem Mater 20:2117–2123CrossRefGoogle Scholar
  37. 37.
    Lide DR (ed) (1997) Handbook of chemistry and physics. CRC Press, USAGoogle Scholar
  38. 38.
    Scherrer P (1918) Nachr Ges Wiss Göttingen. Math-Phys 2:98–100Google Scholar
  39. 39.
    Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TX, Yang Y, Ding Y, Wang X, Her YS (2006) Science 312:1504–1508CrossRefGoogle Scholar
  40. 40.
    Stark WJ, Mädler L, Maciejewski M, Pratsinis SE, Baiker A (2003) Chem Commun 5:588–589CrossRefGoogle Scholar
  41. 41.
    Machida M, Murata Y, Kishikawa K, Zhang D, Ikeue K (2008) Chem Mater 20:4489–4494CrossRefGoogle Scholar
  42. 42.
    Saab E, Aouad S, Abi-Aad E, Bokova M, Zhilinskaya E, Aboukaïs A (2007) Kin Catal 48:841–846CrossRefGoogle Scholar
  43. 43.
    Shimizu K, Kawachi H, Satsuma A (2010) Appl Catal B 96:169–175CrossRefGoogle Scholar
  44. 44.
    Ikeue K, Kobayashi S, Machida M (2009) J Ceram Soc Jpn 117:1153–1157CrossRefGoogle Scholar
  45. 45.
    Aouad S, Abi-Aad E, Aboukais A (2009) Appl Catal B 88:249–256CrossRefGoogle Scholar
  46. 46.
    Issa M, Mahzoul H, Brillard A, Brilhac JF (2009) Chem Eng Technol 32:1859–1865CrossRefGoogle Scholar
  47. 47.
    Kockrick E, Schrage C, Grigas A, Geiger D, Kaskel S (2008) J Solid State Chem 181:1614–1620CrossRefGoogle Scholar
  48. 48.
    Zhang Z, Han D, Wei S, Zhang Y (2010) J Catal 276:16–23CrossRefGoogle Scholar
  49. 49.
    Hansen BB, Jensen AD, Jensen PA (2013) Fuel 106:234–240CrossRefGoogle Scholar
  50. 50.
    Bokova M, Decarne C, Abi-Aad E, Pryakhin A, Lunin V, Aboukais A (2005) Thermochim Acta 428:165–171CrossRefGoogle Scholar
  51. 51.
    Li X, Wei S, Zhang Z, Zhang Y, Wang Z, Su Q, Gao X (2011) Catal Today 175:112–116CrossRefGoogle Scholar
  52. 52.
    Aneggi E, de Leitenburg C, Dolcetti G, Trovarelli A (2007) Top Catal 42:319–322CrossRefGoogle Scholar
  53. 53.
    Lim C-B, Kusaba H, Einaga H, Teraoka Y (2011) Catal Today 175:106–111CrossRefGoogle Scholar
  54. 54.
    Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) J Catal 282:289–298CrossRefGoogle Scholar
  55. 55.
    Van Doorn J, Varloud J, Meriaudeau P, Perrichon V, Chevrier M, Gauthier C (1992) Appl Catal B 1:117–127CrossRefGoogle Scholar
  56. 56.
    Hensgen L, Stöwe K (2011) Catal Today 159:100–107CrossRefGoogle Scholar
  57. 57.
    Muroyama H, Hano S, Matsui T, Eguchi K (2010) Catal Today 153:133–135CrossRefGoogle Scholar
  58. 58.
    Palmisano P, Russo N, Fino P, Fino D, Badini C (2006) Appl Catal B 69:85–92CrossRefGoogle Scholar
  59. 59.
    Oliveira CF, Garcia FAC, Araújo DR, Macedo JL, Dias SCL, Dias JA (2012) Appl Catal A 413–141:292–300CrossRefGoogle Scholar
  60. 60.
    Fang P, Luo MF, Lu JQ, Cen SQ, Yan XY, Wang XX (2008) Thermochim Acta 478:45–50CrossRefGoogle Scholar
  61. 61.
    Wu X, Liu D, Li K, Li J, Weng D (2007) Catal Commun 8:1274–1278CrossRefGoogle Scholar
  62. 62.
    Bueno-Lopez A, Krishna K, Makkee M, Moulijn J (2005) J Catal 230:237–248CrossRefGoogle Scholar
  63. 63.
    Su DS, Müller J-O, Jentoft RE, Rothe D, Jacob E, Schlögl R (2004) Top Catal 30(31):241–245CrossRefGoogle Scholar
  64. 64.
    Jansma H, Fino D, Uitz R, Makkee M (2012) Ind Eng Chem Res 51:7559–7564CrossRefGoogle Scholar
  65. 65.
    Boehman AL, Song J, Alam M (2005) Energy Fuels 19:1857–1864CrossRefGoogle Scholar
  66. 66.
    Higgins KJ, Jung H, Kittelson DB, Roberts JT, Zachariah MR (2003) Environ Sci Technol 37:1949–1954CrossRefGoogle Scholar
  67. 67.
    Setiabudi A, Makkee M, Moulijn JA (2004) Appl Catal B 50:185–194CrossRefGoogle Scholar
  68. 68.
    Jung H, Kittelson DB, Zachariah MR (2005) Combust Flame 142:276–288CrossRefGoogle Scholar
  69. 69.
    Jung H, Kittelson DB, Zachariah MR (2003) SAE paper: 2003-01-3179Google Scholar
  70. 70.
    Vander Wal RL, Yezerets A, Currier NW, Kim DH, Wang CM (2007) Carbon 45:70–77CrossRefGoogle Scholar
  71. 71.
    Furimsky E (1988) Fuel Process Technol 19:203–210CrossRefGoogle Scholar
  72. 72.
    Wersborg BL, Fox LK, Howard JB (1975) Combust Flame 24:1–10CrossRefGoogle Scholar
  73. 73.
    Benfield RE (1992) J Chem Soc. Faraday Trans 88:1107–1110CrossRefGoogle Scholar
  74. 74.
    Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) Chem Commun 46:5936–5938CrossRefGoogle Scholar
  75. 75.
    Aneggi E, de Leitenburg C, Llorca J, Trovarelli A (2012) Catal Today 197:119–126CrossRefGoogle Scholar
  76. 76.
    Désaunay T, Bonura G, Chiodo V, Freni S, Couzinié J-P, Bourgon J, Ringuedé A, Labat F, Adamo C, Cassir M (2013) J Catal 297:193–201CrossRefGoogle Scholar
  77. 77.
    Wu Z, Li M, Overbury SH (2012) J Catal 285:61–73CrossRefGoogle Scholar
  78. 78.
    Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A (2014) ACS Catal 4:172–181CrossRefGoogle Scholar
  79. 79.
    Simonsen S, Dahl S, Johnson E, Helveg S (2008) J Catal 255:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jakob M. Christensen
    • 1
  • Davide Deiana
    • 2
  • Jan-Dierk Grunwaldt
    • 1
    • 3
  • Anker D. Jensen
    • 1
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs LyngbyDenmark
  2. 2.Center for Electron NanoscopyTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Institute for Technical and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations