Catalysis Letters

, Volume 144, Issue 9, pp 1487–1493 | Cite as

Photoelectrochemical Properties of CuCrO2: Characterization of Light Absorption and Photocatalytic H2 Production Performance

  • Yi Ma
  • Xin Zhou
  • Quanbao Ma
  • Anton Litke
  • Peng Liu
  • Yi Zhang
  • Can Li
  • Emiel J. M. HensenEmail author


CuCrO2 delafossite was prepared by the solid-state reaction between Cr2O3 and Cu2O at high temperature (900–1100 °C). The materials were characterized by XRD, X-ray photoelectron, Raman and UV–Vis spectroscopy and transmission electron microscopy. The visible light absorption of the p-type semiconductor increased with increasing calcination temperature. First principles density functional theory calculations were used to compute the density of states and distinguish between Cr3+ d–d transitions and the charge separation electron transitions, which cannot be distinguished in CuCrO2 by UV–Vis spectroscopy. Photocathodes were prepared by depositing the as-prepared CuCrO2 on an FTO substrate by electrophoresis. The resulting cathodic photocurrents under visible light irradiation increased with increasing calcination temperature. CuCrO2 is a photostable semiconductor unlike Cu2O. Photocatalytic H2 production in ethanol/water mixtures shows that the resulting materials are active in water splitting. Co-catalysts substantially increase the activity, the most preferred one is Pt with an order of magnitude increase in performance.

Graphical Abstract


Photocatalysis Photoelectrochemistry CuCrO2 H2 production Co-catalysts 



The authors acknowledge the financial support for this work from the Strategic Scientific Alliances Program between China and the Netherlands (2008DFB50130; 08-PSA-M-01).

Supplementary material

10562_2014_1318_MOESM1_ESM.docx (615 kb)
Supplementary material 1 (DOCX 615 kb)


  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Navarro RM, Sanchez-Sanchez MC, Alvarez-Galvan MC, del Valle F, Fierro JLG (2009) Energy Environ Sci 2:35CrossRefGoogle Scholar
  3. 3.
    Chen XB, Shen SH, Guo LJ, Mao SS (2010) Chem Rev 110:6503CrossRefGoogle Scholar
  4. 4.
    Balat H, Kirtay E (2010) Int J Hydrogen Energy 35:7416CrossRefGoogle Scholar
  5. 5.
    Centi G, Perathoner S (2010) Chemsuschem 3:195CrossRefGoogle Scholar
  6. 6.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253CrossRefGoogle Scholar
  7. 7.
    Chen X, Mao SS (2007) Chem Rev 107:2891CrossRefGoogle Scholar
  8. 8.
    Ketir W, Boucuelia A, Trari M (2008) J Hazard Mater 158:257CrossRefGoogle Scholar
  9. 9.
    Saadi S, Bouguelia A, Trari M (2006) Sol Energy 80:272CrossRefGoogle Scholar
  10. 10.
    Ketir W, Bouguelia A, Trari M (2009) Desalination 244:144CrossRefGoogle Scholar
  11. 11.
    Ketir W, Rekhila G, Trari M, Amrane A (2012) J Environ Sci China 24:2173CrossRefGoogle Scholar
  12. 12.
    Zhang P, Shi YF, Chi MF, Park JN, Stucky GD, McFarland EW, Gao L (2013) Nanotechnology 24:345704CrossRefGoogle Scholar
  13. 13.
    Rastogi AC, Lim SH, Desu SB (2008) J Appl Phys 104:023712CrossRefGoogle Scholar
  14. 14.
    Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E (2011) Nat Mater 10:456CrossRefGoogle Scholar
  15. 15.
    Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Gratzel M (2012) Energy Environ Sci 5:8673CrossRefGoogle Scholar
  16. 16.
    He ZQ, Shi YQ, Gao C, Wen LN, Chen JM, Song S (2014) J Phys Chem C 118:389CrossRefGoogle Scholar
  17. 17.
    Hou DF, Hu XL, Hu P, Zhang W, Zhang MF, Huang YH (2013) Nanoscale 5:9764CrossRefGoogle Scholar
  18. 18.
    Sapkota BB, Mishra SR (2013) J Nanosci Nanotechnol 13:6588CrossRefGoogle Scholar
  19. 19.
    Chen YS, Crittenden JC, Hackney S, Sutter L, Hand DW (2005) Environ Sci Technol 39:1201CrossRefGoogle Scholar
  20. 20.
    Kim HG, Borse PH, Choi WY, Lee JS (2005) Angew Chem Int Ed 44:4585CrossRefGoogle Scholar
  21. 21.
    Xiong DH, Xu Z, Zeng XW, Zhang WJ, Chen W, Xu XB, Wang MK, Cheng YB (2012) J Mater Chem 22:24760CrossRefGoogle Scholar
  22. 22.
    Miclau M, Ursu D, Kumar S, Grozescu I (2012) J Nanopart Res 14:1110CrossRefGoogle Scholar
  23. 23.
    Wang JM, Zheng PC, Li D, Deng ZH, Dong WW, Tao RH, Fang XD (2011) J Alloys Compd 509:5715CrossRefGoogle Scholar
  24. 24.
    Chiu TW, Yu BS, Wang YR, Chen KT, Lin YT (2011) J Alloys Compd 509:2933CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  26. 26.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  28. 28.
    Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  29. 29.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  30. 30.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505CrossRefGoogle Scholar
  31. 31.
    Scanlon DO, Walsh A, Morgan BJ, Watson GW, Payne DJ, Egdell RG (2009) Phys Rev B 79:035101CrossRefGoogle Scholar
  32. 32.
    Crottaz O, Kubel F, Schmid H (1996) J Solid State Chem 122:247CrossRefGoogle Scholar
  33. 33.
    Elkhouni T, Amami M, Strobel P, Salah AB (2013) J Supercond Novel Magn 26:2795CrossRefGoogle Scholar
  34. 34.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327CrossRefGoogle Scholar
  35. 35.
    Puurunen RL, Weckhuysen BM (2002) J Catal 210:418CrossRefGoogle Scholar
  36. 36.
    Han HX, Frei H (2008) J Phys Chem C 112:8391CrossRefGoogle Scholar
  37. 37.
    Severino F, Brito JL, Laine J, Fierro JLG, Agudo AL (1998) J Catal 177:82CrossRefGoogle Scholar
  38. 38.
    Deutsch KL, Shanks BH (2012) J Catal 285:235CrossRefGoogle Scholar
  39. 39.
    Platzman I, Brener R, Haick H, Tannenbaum R (2008) J Phys Chem C 112:1101CrossRefGoogle Scholar
  40. 40.
    Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL (2002) Thin Solid Films 411:119CrossRefGoogle Scholar
  41. 41.
    Liu P, Hensen EJM (2013) J Am Chem Soc 135:14032CrossRefGoogle Scholar
  42. 42.
    Camposmartin JM, Guerreroruiz A, Fierro JLG (1995) J Catal 156:208CrossRefGoogle Scholar
  43. 43.
    Capece FM, Dicastro V, Furlani C, Mattogno G, Fragale C, Gargano M, Rossi M (1982) J Electron Spectrosc Relat Phenom 27:119CrossRefGoogle Scholar
  44. 44.
    Wu GP, Chen T, Zong X, Yan HJ, Ma GJ, Wang XL, Xu Q, Wang DG, Lei ZB, Li C (2008) J Catal 253:225CrossRefGoogle Scholar
  45. 45.
    Halas S, Durakiewicz T (1998) J Phys Condens Mater 10:10815CrossRefGoogle Scholar
  46. 46.
    Yang JH, Wang DG, Han HX, Li C (2013) Acc Chem Res 46:1900CrossRefGoogle Scholar
  47. 47.
    Trasatti S (1972) J Electroanal Chem 39:163CrossRefGoogle Scholar
  48. 48.
    Siripala W, Ivanovskaya A, Jaramillo TF, Baeck SH, McFarland EW (2003) Sol Energy Mater Sol Cells 77:229CrossRefGoogle Scholar
  49. 49.
    Rai BP (1988) Solar Cells 25:265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yi Ma
    • 1
    • 2
  • Xin Zhou
    • 2
  • Quanbao Ma
    • 1
  • Anton Litke
    • 1
  • Peng Liu
    • 1
  • Yi Zhang
    • 1
  • Can Li
    • 2
  • Emiel J. M. Hensen
    • 1
    Email author
  1. 1.Inorganic Materials Chemistry, Schuit Institute of CatalysisEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean EnergyChinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations