Catalysis Letters

, Volume 144, Issue 8, pp 1407–1410 | Cite as

Enantioselective Ammonolysis of Phenylglycine Methyl Ester with Lipase–Pluronic Nanoconjugate in Tertiary Butanol

  • Xiaoling Wu
  • Rui Wang
  • Yifei Zhang
  • Jun GeEmail author
  • Zheng LiuEmail author


Asymmetrical ammonolysis of (R)- and (S)-phenylglycine methyl ester was carried out by using a lipase (CALB)–polymer (Pluronic) nanoconjugate as the catalyst, displaying a 11-fold increased catalytic rate compared to the free CALB in tertiary butanol.

Graphical Abstract

The asymmetrical ammonolysis of (R)- and (S)-phenylglycine methyl ester was accomplished using a lipase–Pluronic nanoconjugate, displaying a 11-fold higher catalytic rate compared to the free lipase.


Enzymatic catalysis Nanoparticles Enzymes 



This work was supported by the National Natural Science Foundation of China under the Grant Number of 21206082 and 21036003.

Supplementary material

10562_2014_1289_MOESM1_ESM.doc (27 kb)
Supplementary material 1 (DOC 26 kb)


  1. 1.
    Bruggink A, Roos EC, de Vroom E (1998) Org Process Res Dev 2:128–133CrossRefGoogle Scholar
  2. 2.
    Du W, Zong M, Guo Y, Liu D (2003) Biotechnol Appl Biochem 38:107–110CrossRefGoogle Scholar
  3. 3.
    Wegman MA, Hacking MAPJ, Rops J, Pereira P, van Rantwijk F, Sheldon RA (1999) Tetrahedron 10:1739–1750CrossRefGoogle Scholar
  4. 4.
    De Zoete M, Kock-vanDalen A (1993) J Chem Soc, Chem Commun 1831–1832Google Scholar
  5. 5.
    De Zoete M, Kock-van Dalen AC, van Rantwijk F, Sheldon R (1996) J Mol Catal B-Enzym 1:109–113CrossRefGoogle Scholar
  6. 6.
    Klibanov AM (1997) Trends Biotechnol 15:97–101CrossRefGoogle Scholar
  7. 7.
    Ge J, Lu D, Liu Z, Liu Z (2009) Biochem Eng J 44:53–59CrossRefGoogle Scholar
  8. 8.
    Ge J, Yang C, Zhu J, Lu D, Liu Z (2012) Top Catal 55:1070–1080CrossRefGoogle Scholar
  9. 9.
    Kim J, Grate JW, Wang P (2006) Chem Eng Sci 61:1017–1026CrossRefGoogle Scholar
  10. 10.
    Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN (2013) Wires Nanomed Nanobiol 5:320–328CrossRefGoogle Scholar
  11. 11.
    Kim J, Grate JW (2003) Nano Lett 3:1219–1222CrossRefGoogle Scholar
  12. 12.
    Ge J, Lei J, Zare RN (2011) Nano Lett 11:2551–2554CrossRefGoogle Scholar
  13. 13.
    Ge J, Lu D, Wang J, Liu Z (2009) Biomacromolecules 10:1612–1618CrossRefGoogle Scholar
  14. 14.
    Ge J, Lu D, Wang J, Yan M, Lu Y, Liu Z (2008) J Phys Chem B 112:14319–14324CrossRefGoogle Scholar
  15. 15.
    Wang R, Zhang Y, Huang J, Lu D, Ge J, Liu Z (2013) Green Chem 15:1155–1158CrossRefGoogle Scholar
  16. 16.
    Yan M, Ge J, Liu Z, Ouyang P (2006) J Am Chem Soc 128:11008–11009CrossRefGoogle Scholar
  17. 17.
    Ge J, Lu D, Yang C, Liu Z (2011) Macromol Rapid Commun 32:546–550Google Scholar
  18. 18.
    Ge J, Lei J, Zare RN (2012) Nat Nanotechnol 7:428–432CrossRefGoogle Scholar
  19. 19.
    Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z, Zare RN (2013) Chem-Asian J 8:2358–2360CrossRefGoogle Scholar
  20. 20.
    Zeng J, Xia Y (2012) Nat Nanotechnol 7:415–416CrossRefGoogle Scholar
  21. 21.
    Wang L-B, Wang Y-C, He R, Zhuang A, Wang X, Zeng J, Hou J (2013) J Am Chem Soc 135:1272–1275CrossRefGoogle Scholar
  22. 22.
    Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, Wang Y, Niu Z (2014) Nanoscale 6:255–262CrossRefGoogle Scholar
  23. 23.
    Zhu J, Zhang Y, Lu D, Zare RN, Ge J, Liu Z (2013) Chem Commun 49:6090–6092CrossRefGoogle Scholar
  24. 24.
    Litvic M, Filipan M, Pogorelic I, Cepanec I (2005) Green Chem 7:771–774CrossRefGoogle Scholar
  25. 25.
    Costa CE, Clososki GC, Barchesi HB, Zanotto SP, Nascimento MG, Comasseto JV (2004) Tetrahedron 15:3945–3954CrossRefGoogle Scholar
  26. 26.
    Levinson WE, Kuo TM, Kurtzman CP (2005) Enzyme Microb Technol 37:126–130CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Yuan C, Li Z (2002) Tetrahedron 58:2973–2978CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations