Catalysis Letters

, Volume 144, Issue 3, pp 460–468 | Cite as

Increase of the Ni/W Ratio in Heteropolyanions Based NiW Hydrocracking Catalysts with Improved Catalytic Performances

  • Karima Ben TayebEmail author
  • Carole Lamonier
  • Christine Lancelot
  • Michel Fournier
  • Audrey Bonduelle-Skrzypczak
  • Fabrice Bertoncini


In the present work, we investigated the influence of the increase of Ni/W ratio by the addition of nickel nitrate on heteropolycompound (HPC) based catalysts. Synthesized catalysts were characterized by Raman, XPS and HRTEM techniques and were examined in the model reaction of toluene hydrogenation. The Ni2SiW12O40 based catalyst with a ratio of 0.36 obtained by addition of nickel nitrate was found to have the best catalytic activity compared to the most efficient of the HPC based catalysts with a stoichiometric Ni/W ratio of 0.36. Raman spectroscopy showed that the SiW12O40 4− HPA was decomposed during the drying step in SiW11O39 8− species.

Graphical Abstract


NiW ratio Heteropolyanion Hydrocracking XPS HRTEM Raman Toluene hydrogenation 



We are thankful to Martine Trentesaux for her help in spectroscopy XPS. The HRTEM facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais, and the European Regional Development Fund (ERDF).


  1. 1.
    Marcilly C (2003) Catalyse acido–basique-Application au raffinage et à la pétrochimie, vol 2. Technip, ParisGoogle Scholar
  2. 2.
    Topsoe NY, Topsoe H (1982) J Catal 75:354–374CrossRefGoogle Scholar
  3. 3.
    Cui G, Wang J, Fan H, Sun X, Jiang Y, Wang S, Liu D, Gui J (2011) Fuel Process Technol 92:2320–2327CrossRefGoogle Scholar
  4. 4.
    Gutberlet LC, Bertolacini RJ, Kukes SG (1994) Energy Fuels 8:227–233CrossRefGoogle Scholar
  5. 5.
    Palcheva R, Dimitrov L, Tyuliev G, Spojakina A, Jiratova K (2013) Appl Surf Sci 265:309–316CrossRefGoogle Scholar
  6. 6.
    Vissenberg MJ, Van Der Meer Y, Hensen EJM, De Beer VHJ, Van Der Kraan AM, Van Santen RA, Van Veen JAR (2001) J Catal 198:151–163CrossRefGoogle Scholar
  7. 7.
    Lamonier C, Martin C, Mazurelle J, Harlé V, Guillaume D, Payen E (2007) Appl Catal B 70:548–556CrossRefGoogle Scholar
  8. 8.
    Nikulshin PA, Mozhaev AV, Pimerzin AA, Konovalov VV, Pimerzin AA (2012) Fuel 100:24–33CrossRefGoogle Scholar
  9. 9.
    Ben Tayeb K, Lamonier C, Lancelot C, Fournier M, Payen E, Bonduelle A, Bertoncini F (2010) Catal Today 150:207–212CrossRefGoogle Scholar
  10. 10.
    Ben Tayeb K, Lamonier C, Fournier M, Payen E, Bertoncini F, Bonduelle A (2008) Am Chem Soc Div Fuel Chem 53:9–12Google Scholar
  11. 11.
    Ben Tayeb K, Lamonier C, Lancelot C, Fournier M, Payen E, Bertoncini F, Bonduelle A (2009) Comptes Rendus de Chimie 12:692–698CrossRefGoogle Scholar
  12. 12.
    Guichard B, Roy-Auberger M, Devers E, Pichon C, Legens C, Lecour P (2010) Catal Today 149:2–10CrossRefGoogle Scholar
  13. 13.
    Ben Tayeb K, Lamonier C, Lancelot C, Fournier M, Bonduelle-Skrzypczak A, Bertoncini F (2012) Appl Catal B 126:55–63CrossRefGoogle Scholar
  14. 14.
    Guichard B, Roy-Auberger M, Devers E, Legens C, Raybaud P (2008) Catal Today 130:97–108CrossRefGoogle Scholar
  15. 15.
    Gandubert A, Legens C, Guillaume D, Rebours S, Payen E (2007) Oil Gas Sci Technol 62:79–89CrossRefGoogle Scholar
  16. 16.
    Frizi N, Blanchard P, Payen E, Baranek P, Lancelot C, Rebeilleau M, Dupuy C, Dath JP (2008) Catal Today 130:32–40CrossRefGoogle Scholar
  17. 17.
    Frizi N, Blanchard P, Payen E, Baranek P, Rebeilleau M, Dupuy C, Dath JP (2008) Catal Today 130:272–282CrossRefGoogle Scholar
  18. 18.
    Plazenet G, Martin C, Payen E, Rebours B, Lynch J (2005) Micropor Mesopor Mater 80:275–278CrossRefGoogle Scholar
  19. 19.
    Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216CrossRefGoogle Scholar
  20. 20.
    H. Toulhoat, P. Raybaud, in: Catalysis by transition metal sulphides: from molecular theory to industrial application, eds. Technip (2013)Google Scholar
  21. 21.
    Reinhoudt HR, Crezee E, Van Langeveld AD, Kooyman PJ, Van Veen JAR, Moulijn JA (2000) J Catal 196:315–329CrossRefGoogle Scholar
  22. 22.
    Kishan G, Coulier L, De Beer VHJ, Van Veen JAR, Niemantsverdriet JW (2000) J Catal 196:180–189CrossRefGoogle Scholar
  23. 23.
    Van Veen JAR, Hendriks PAJM, Andrea RR, Romers EJGM, Wilson AE (1990) J Phys Chem 94:5282–5285CrossRefGoogle Scholar
  24. 24.
    Coulier L, Kishan G, Van Veen JAR, Niemantsverdriet JW (2002) J Phys Chem B 106:5897–5906CrossRefGoogle Scholar
  25. 25.
    Kelly SD, Yang N, Mickelson GE, Greenlay N, Karapetrova E, Sinkler W, Bare SR (2009) J Catal 263:16–33CrossRefGoogle Scholar
  26. 26.
    Sun M, Burgi T, Cattaneo R, Van Langeveld D, Prins R (2001) J Catal 201:258–269CrossRefGoogle Scholar
  27. 27.
    Zuo D, Li D, Nie H, Shi Y, Lacroix M, Vrinat M (2004) J Mol Catal A 211:179–189CrossRefGoogle Scholar
  28. 28.
    Kim CH, Yoon WL, Lee IC, Woo SI (1996) Appl Catal A 144:159–175CrossRefGoogle Scholar
  29. 29.
    Kural E, Cant NW, Trimm DL, Mauchausse C (1991) J Chem Tech Biotechnol 50:493–506CrossRefGoogle Scholar
  30. 30.
    Van Der Meer Y, Hensen EJM, Van Veen JAR, Van Der Kraan AM (2004) J Catal 228:433–446CrossRefGoogle Scholar
  31. 31.
    Zuo D, Vrinat M, Nie H, Maugé F, Shi Y, Lacroix M, Li D (2004) Catal Today 93–95:751–760CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Karima Ben Tayeb
    • 1
    Email author
  • Carole Lamonier
    • 2
  • Christine Lancelot
    • 2
  • Michel Fournier
    • 2
  • Audrey Bonduelle-Skrzypczak
    • 3
  • Fabrice Bertoncini
    • 3
  1. 1.CNRS UMR 8516Laboratoire de Spectrochimie Infrarouge et Raman – LASIRVilleneuve d’AscqFrance
  2. 2.CNRS UMR 8181Unité de Catalyse et Chimie du Solide – UCCS, Université Lille Nord de FranceVilleneuve d’AscqFrance
  3. 3.IFP Energies nouvellesRond-point de l’échangeur de SolaizeSolaizeFrance

Personalised recommendations