Catalysis Letters

, Volume 143, Issue 10, pp 996–1002 | Cite as

Low Temperature Toluene Oxidation Over Pt Nanoparticles Supported on Yttria Stabilized-Zirconia

  • Holly A. E. Dole
  • Rima J. Isaifan
  • Foteini M. Sapountzi
  • Leonardo Lizarraga
  • Daniel Aubert
  • Agnes Princivalle
  • Philippe Vernoux
  • Elena A. Baranova


Toluene oxidation was measured over Pt nanoparticles synthesized using a modified polyol reduction method and deposited on ionically conductive yttria-stabilized zirconia (Pt/YSZ) for three different loadings (1.1, 0.8, 0.4 %), and non-ionically conductive γ-alumina (Pt/γ-Al2O3) as a comparison (metal loading 0.7 %). It was found that nanoparticles supported on YSZ, tested as a support for the first time for toluene oxidation, have greater catalytic activity compared to a conventional γ-Al2O3 support in spite of a lower specific area and Pt dispersion. This could be explained by the stronger metal-support interactions between Pt and YSZ due to the ionic conductivity of YSZ and presence of oxygen vacancies.

Graphical Abstract


Toluene oxidation Ionic conductivity Yttria-stabilized zirconia Oxygen vacancies Platinum 



The authors acknowledge the financial support from Natural Science and Engineering Research Council (NSERC). Dr. N. De Silva at the University of Ottawa for ICP measurements and the microscopy service of IRCELYON.


  1. 1.
    Kim SC, Shim WG (2010) Appl Catal B 98:180–185CrossRefGoogle Scholar
  2. 2.
    Benard S, Ousmane M, Retailleau L, Boreave A, Vernoux P, Giroir-Fendler A (2009) Can J Civil Eng 36:1935–1945CrossRefGoogle Scholar
  3. 3.
    Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) J Hazard Mater 186:1445–1454CrossRefGoogle Scholar
  4. 4.
    Subbarao HS, Maiti EC (1984) Solid State Ionics 11:317–338CrossRefGoogle Scholar
  5. 5.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  6. 6.
    Vayenas C, Brosda S, Pliangos C (2003) J Catal 216:487–504CrossRefGoogle Scholar
  7. 7.
    Vernoux P, Guth M, Li X (2009) Electrochem Solid State 12:E9–E11CrossRefGoogle Scholar
  8. 8.
    Masui T, Imadzu H, Matsuyama N, Imanaka N (2010) J Hazard Mater 176:1106–1109CrossRefGoogle Scholar
  9. 9.
    Diehl F, Barbier J Jr, Duprez D, Guibard I, Mabilon G (2010) Appl Catal B 95:217–227CrossRefGoogle Scholar
  10. 10.
    Baranova EA, Le Page Y, Ilin D, Bock C, MacDougall B, Mercier PHJ (2009) J alloy Compd 471:387–394CrossRefGoogle Scholar
  11. 11.
    Baranova EA, Bock C, Ilin D, Wang D, MacDougall B (2006) Surf Sci 600:3502–3511CrossRefGoogle Scholar
  12. 12.
    Isaifan RJ, Dole HAE, Obeid E, Lizarraga L, Baranova EA, Vernoux P (2011) ECS Trans 35:43–57CrossRefGoogle Scholar
  13. 13.
    Ayache J, Beaurier L, Boumendil J, Ehret G, Laub D (2010) Sample preparation handbook for transmission electron microscopy. Springer, New YorkGoogle Scholar
  14. 14.
    Fortunato MA, Aubert D, Capdeillayre C, Daniel C, Hadjar A, Princivalle A, Guizard C, Vernoux P (2011) Appl Catal A 403:18–24CrossRefGoogle Scholar
  15. 15.
    Boudart M (1969) Adv Catal 20:153–165Google Scholar
  16. 16.
    Liotta LF (2010) Appl Catal B 100:403–412CrossRefGoogle Scholar
  17. 17.
    Paulis M, Peyrard H, Montes M (2001) J Catal 199:30–40CrossRefGoogle Scholar
  18. 18.
    Santos VP, Carabineiro SAC, Tavares PB, Pereira MFR, Órfão JJM, Figueiredo JL (2010) Appl Catal B 99:198–205CrossRefGoogle Scholar
  19. 19.
    Bendahou K, Cherif L, Siffert S, Tidahy HL, Benaïssa H, Aboukaïs A (2008) Appl Catal A 351:82–87CrossRefGoogle Scholar
  20. 20.
    Alifanti M, Florea M, Pârvulescu VI (2007) Appl Catal B 70:400–405CrossRefGoogle Scholar
  21. 21.
    He C, Li P, Cheng J, Hao Z-P, Xu Z-P (2009) Water Air Soil Pollut 209:365–376CrossRefGoogle Scholar
  22. 22.
    Radic N, Grbic B, Terlecki-Baricevic A (2004) Appl. Catal. B-Environ. 50:153–159CrossRefGoogle Scholar
  23. 23.
    Wieckowski A, Savinova ER, Vayenas CG (eds) (2001) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New YorkGoogle Scholar
  24. 24.
    Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuagra A, Varverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Chem Rev. doi: 10.1021/cr4000336 Google Scholar
  25. 25.
    Isaifan RJ, Dole HAE, Obeid E, Lizarraga L, Vernoux P, Baranova EA (2012) Electrochem Solid State 15:E1–E4CrossRefGoogle Scholar
  26. 26.
    Isaifan RJ, Baranova EA (2013) Electrochem Commun 27:164–167CrossRefGoogle Scholar
  27. 27.
    Li X, Gaillard F, Vernoux P (2007) Top Catal 44:391–398CrossRefGoogle Scholar
  28. 28.
    Tsiplakides D, Nicole J, Vayenas CG, Comninellis C (1998) J Electrochem Soc 145:905–908CrossRefGoogle Scholar
  29. 29.
    Nicole J, Tsiplakides D, Wodiunig S, Comninellis Ch (1997) Electrochem Soc 144:L312–L314CrossRefGoogle Scholar
  30. 30.
    Varkaraki E, Nicole J, Plattner E, Comninellis C, Vayenas CG (1995) J Appl Electrochem 25:978–981CrossRefGoogle Scholar
  31. 31.
    Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) J Catal 204:23–34CrossRefGoogle Scholar
  32. 32.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222:192–206CrossRefGoogle Scholar
  33. 33.
    Tsampas MN, Sapountzi FM, Boreave A, Vernoux P (2013) Electrochem Commun 26:13–16CrossRefGoogle Scholar
  34. 34.
    Kambolis A, Lizarraga L, Tsampas MN, Burel L, Rieu M, Viricelle JP, Vernoux P (2012) Electrochem Commun 19:5–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Holly A. E. Dole
    • 1
  • Rima J. Isaifan
    • 1
  • Foteini M. Sapountzi
    • 2
  • Leonardo Lizarraga
    • 2
  • Daniel Aubert
    • 3
  • Agnes Princivalle
    • 3
  • Philippe Vernoux
    • 2
  • Elena A. Baranova
    • 1
  1. 1.Department of Chemical and Biological Engineering and Center for Catalysis Research and InnovationUniversity of OttawaOttawaCanada
  2. 2.Institut de Recherches sur la catalyse et l’environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Lyon 1VilleurbanneFrance
  3. 3.Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR3080, CNRS/Saint-Gobain - 550Cavaillon CedexFrance

Personalised recommendations