Advertisement

Catalysis Letters

, Volume 143, Issue 11, pp 1182–1187 | Cite as

Active Metal–Oxide Interfaces in Supported Pt–Cu/CeO2 and Mechanically Mixed Pt–Cu+CeO2 Catalysts Synthesized by an Electron Beam Irradiation Method for Selective CO Oxidation

  • Junichiro Kugai
  • Toshiharu Moriya
  • Satoshi Seino
  • Takashi Nakagawa
  • Yuji Ohkubo
  • Hiroaki Nitani
  • Takao A. Yamamoto
Article

Abstract

Pt–Cu supported on CeO2 and mechanically mixed with CeO2 were synthesized using an electron beam irradiation method to probe the active metal–oxide interfaces for catalytic CO preferential oxidation. The lack of activity for the mechanical mixture of Pt with CeO2 showed the metal–CeO2 interface is critical for monometallic Pt. The comparable activity for the CeO2-supported Pt–Cu and mechanical mixture of Pt–Cu with CeO2 suggested platinum–copper contact as a new active site for bimetallic Pt–Cu. A non-linear increase of activity along the Cu content in catalyst and the Cu–O bonds detected in XANES spectra in the reaction condition at 100 °C suggested the presence of CuOx on the Pt–Cu alloy surface as strong chemisorption sites for oxygen.

Graphical Abstract

Keywords

Pt–Cu Bimetallic catalyst Metal–oxide interface Preferential oxidation PROX Electron beam irradiation 

Notes

Acknowledgments

The authors thank Mr. K. Ueno (EBIS, Japan) for the provision of beam time for the electron accelerator. The authors thank partial support from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid No. 22241023) and Ministry of Economy, Trade and Industry (R&D Project for Regional Innovation No. 22U5009).

References

  1. 1.
    Kahlich MJ, Gasteiger HA, Behm RJ (1997) J Catal 171:93CrossRefGoogle Scholar
  2. 2.
    Schubert MM, Kahlich MJ, Gasteiger HA, Behm RJ (1999) J Power Sources 84:175CrossRefGoogle Scholar
  3. 3.
    Chin SY, Alexeev OS, Amiridis MD (2006) J Catal 243:329CrossRefGoogle Scholar
  4. 4.
    Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Nat Mater 7:333CrossRefGoogle Scholar
  5. 5.
    Liu XS, Korotkikh O, Farrauto R (2002) Appl Catal A 226:293Google Scholar
  6. 6.
    Sirijaruphan A, Goodman JG, Rice RW (2004) J Catal 224:304CrossRefGoogle Scholar
  7. 7.
    Tanaka K, Moro-oka Y, Ishigure K, Yajima T, Okabe Y, Kato Y, Hamano H, Sekiya S, Tanaka H, Matsumoto Y, Koinuma H, He H, Zhang CB, Feng QC (2004) Catal Lett 92:115CrossRefGoogle Scholar
  8. 8.
    Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M (2005) J Catal 236:262CrossRefGoogle Scholar
  9. 9.
    Ko EY, Park ED, Lee HC, Lee D, Kim S (2007) Angew Chem Int Ed 46:734CrossRefGoogle Scholar
  10. 10.
    Komatsu T, Tamura A (2008) J Catal 258:306CrossRefGoogle Scholar
  11. 11.
    Suh DJ, Kwak C, Kim JH, Kwon SM, Park TJ (2005) J Power Sources 142:70CrossRefGoogle Scholar
  12. 12.
    Ko EY, Park ED, Seo KW, Lee HC, Lee D, Kim S (2006) Catal Lett 110:275CrossRefGoogle Scholar
  13. 13.
    Mozer TS, Passos FB (2011) Int J Hydrogen Energy 36:13369CrossRefGoogle Scholar
  14. 14.
    Boualleg M, Basset JM, Candy JP, Caps V, Jumas JC, Norsic S, Quadrelli EA, Veyre L, Thieuleux C (2012) ChemCatChem 4:1729CrossRefGoogle Scholar
  15. 15.
    Teschner D, Wootsch A, Paal Z (2012) Appl Catal A 411:31CrossRefGoogle Scholar
  16. 16.
    Dupont C, Delbecq F, Loffreda D, Jugnet Y (2011) J Catal 278:239CrossRefGoogle Scholar
  17. 17.
    Baltacioglu FS, Gulyuz B, Aksoylu AE, Onsan ZI (2007) Turk J Chem 31:455Google Scholar
  18. 18.
    Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D, Gu XK, Chen LM, Wang Z, Zhang H, Wang B, Bao XH (2010) Science 328:1141CrossRefGoogle Scholar
  19. 19.
    Mu RT, Fu QA, Xu H, Zhang HI, Huang YY, Jiang Z, Zhang SO, Tan DL, Bao XH (2011) J Am Chem Soc 133:1978CrossRefGoogle Scholar
  20. 20.
    Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Mater Res Soc Symp Proc 1217:65Google Scholar
  21. 21.
    Kugai J, Kitagawa R, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2011) Appl Catal A 406:43CrossRefGoogle Scholar
  22. 22.
    Moriya T, Kugai J, Seino S, Ohkubo Y, Nakagawa T, Nitani H, Yamamoto TA (2013) J Nanopart Res 15:1451CrossRefGoogle Scholar
  23. 23.
    Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2012) Int J Hydrogen Energy 37:4787CrossRefGoogle Scholar
  24. 24.
    Belloni J, Mostafavi M, Remita H, Marignier JL, Marie-Odile D (1998) New J Chem 22:1239CrossRefGoogle Scholar
  25. 25.
    Belloni J, Mostafavi M (2001) Radiation chemistry of nanocolloids and clusters, studies in physical and theoretical chemistry. In: Jonah CD, Rao BSM (eds) Radiation chemistry: present status and future trends, vol 87. Elsevier, Amsterdam, p 411CrossRefGoogle Scholar
  26. 26.
    Daimon H, Onodera T, Honda Y, Nitani H, Seino S, Nakagawa T, Yamamoto TA (2008) ECS Trans 11:93CrossRefGoogle Scholar
  27. 27.
    Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Ueno K, Yamamoto TA (2013) J Phys Chem C 117:5742CrossRefGoogle Scholar
  28. 28.
    Ghosh T, Leonard BM, Zhou Q, DiSalvo FJ (2010) Chem Mater 22:2190CrossRefGoogle Scholar
  29. 29.
    Pozdnyakova O, Teschner D, Wootsch A, Krohnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, Knop-Gericke A, Paal Z, Schlogl R (2006) J Catal 237:1CrossRefGoogle Scholar
  30. 30.
    Croy JR, Mostafa S, Liu J, Sohn YH, Heinrich H, Cuenya BR (2007) Catal Lett 119:209CrossRefGoogle Scholar
  31. 31.
    Oran U, Uner D (2004) Appl Catal B 54:183CrossRefGoogle Scholar
  32. 32.
    Holmgren A, Andersson B, Duprez D (1999) Appl Catal B 22:215CrossRefGoogle Scholar
  33. 33.
    Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Yamamoto TA (2013) Int J Hydrogen Energy 38:4456CrossRefGoogle Scholar
  34. 34.
    Sun D, Gu XK, Ouyang R, Su HY, Fu Q, Bao X, Li WX (2012) J Phys Chem C 116:7491CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Junichiro Kugai
    • 1
  • Toshiharu Moriya
    • 1
  • Satoshi Seino
    • 1
  • Takashi Nakagawa
    • 1
  • Yuji Ohkubo
    • 1
  • Hiroaki Nitani
    • 2
  • Takao A. Yamamoto
    • 1
  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Institute of Materials Structure Science (IMSS)High Energy Accelerator Research OrganizationTsukubaJapan

Personalised recommendations