Advertisement

Catalysis Letters

, Volume 143, Issue 6, pp 555–562 | Cite as

Molecular Structure Effects in the Asymmetric Transfer Hydrogenation of Functionalized Dihydroisoquinolines on (S,S)-[RuCl(η 6-p-cymene)TsDPEN]

  • Jiří Václavík
  • Jan Pecháček
  • Beáta Vilhanová
  • Petr Šot
  • Jakub Januščák
  • Václav Matoušek
  • Jan Přech
  • Simona Bártová
  • Marek Kuzma
  • Petr Kačer
Article

Abstract

The asymmetric transfer hydrogenation of five dihydroisoquinolines (DHIQs) was studied by NMR spectroscopy. The DHIQs differed by substitution with methoxy groups, which had a significant effect upon the reaction performance in terms of reaction rate and enantioselectivity. The differences are most probably related to the basicity of DHIQs.

Graphical Abstract

Keywords

ATH Kinetics Imines NMR Bader 

Notes

Acknowledgments

This work was financially supported by the Grant Agency of the Czech Republic (Grant GACR 104/09/1497 and P106/12/1276), and by grant for long-term conceptual development of Institute of Microbiology RVO: 61388971. The access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the program “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is highly acknowledged. The access to the CERIT-SC computing and storage facilities provided under the program Center CERIT Scientific Cloud, part of the Operational Program Research and Development for Innovations, reg. no. CZ. 1.05/3.2.00/08.0144, is appreciated.

References

  1. 1.
    Okuda K, Kotake Y, Ohta S (2003) Bioorg Med Chem Lett 13:2853–2855CrossRefGoogle Scholar
  2. 2.
    Kaufman TS (2004) Tetrahedron Asymmetry 15:1203–1237CrossRefGoogle Scholar
  3. 3.
    Wang C, Wu X, Xiao J (2008) Chem Asian J 3:1750–1770CrossRefGoogle Scholar
  4. 4.
    Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) J Am Chem Soc 118:2521–2522CrossRefGoogle Scholar
  5. 5.
    Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R (1996) J Am Chem Soc 118:4916–4917CrossRefGoogle Scholar
  6. 6.
    Vilhanová B, Matoušek V, Václavík J, Syslová K, Přech J, Pecháček J, Šot P, Januščák J, Toman J, Zápal J, Kuzma M, Kačer P (2013) Tetrahedron: Asymmetry 24:50–55CrossRefGoogle Scholar
  7. 7.
    Whaley WM, Govindachari TR (1951) Org React 6:74–150Google Scholar
  8. 8.
    GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc, WallingfordGoogle Scholar
  9. 9.
    Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  10. 10.
    Becke ADJ (1993) Chem Phys 98:5648–5652Google Scholar
  11. 11.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  12. 12.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  13. 13.
    Arnaldsen A, Tang W, Henkelman G, Bader charge analysis. http://theory.cm.utexas.edu/bader/. Accessed 15 May 2012
  14. 14.
    Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204CrossRefGoogle Scholar
  15. 15.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  16. 16.
    Pecháček J, Václavík J, Přech J, Šot P, Januščák J, Vilhanová B, Vavřík J, Kuzma M, Kačer P (2013) Tetrahedron Asymmetry 24:233–239CrossRefGoogle Scholar
  17. 17.
    Yamakawa M, Yamada I, Noyori R (2001) Angew Chem Int Ed 40:2818–2821CrossRefGoogle Scholar
  18. 18.
    Haack K-J, Hashiguchi S, Fujii A, Ikariya T, Noyori R (1997) Angew Chem Int Ed Engl 3:285–288CrossRefGoogle Scholar
  19. 19.
    Koike T, Ikariya T (2004) Adv Synth Catal 346:37–41CrossRefGoogle Scholar
  20. 20.
    Sandoval CA, Ohkuma T, Utsumi N, Tsutsumi K, Murata K (2006) Chem Asian J l–2:102–110CrossRefGoogle Scholar
  21. 21.
    Blackmond DG, Ropic M, Stefinovic M (2006) Org Proc Res Dev 10:457–463CrossRefGoogle Scholar
  22. 22.
    Cheung FKK, Clarke AJ, Clarkson GJ, Fox DJ, Graham MA, Lin C, Crivillé AL, Wills M (2010) Dalton Trans 39:1395–1402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jiří Václavík
    • 1
  • Jan Pecháček
    • 1
  • Beáta Vilhanová
    • 1
  • Petr Šot
    • 1
  • Jakub Januščák
    • 1
  • Václav Matoušek
    • 1
  • Jan Přech
    • 1
  • Simona Bártová
    • 2
  • Marek Kuzma
    • 2
  • Petr Kačer
    • 1
  1. 1.Department of Organic TechnologyInstitute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Laboratory of Molecular Structure CharacterizationInstitute of Microbiology, v.v.i., Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations