Catalysis Letters

, Volume 143, Issue 5, pp 386–394 | Cite as

Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

  • Martin Høj
  • David K. Pham
  • Michael Brorson
  • Lutz Mädler
  • Anker Degn Jensen
  • Jan-Dierk GrunwaldtEmail author


Two-nozzle frame spray analysis (FSP) synthesis of CoMo/Al2O3 where Co and Al are sprayed in separate flames was applied to minimize the formation of CoAl2O4 observed in one-nozzle flame spray pyrolysis (FSP) synthesis and the materials were characterized by N2-adsorption (BET), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, transmission electron microscopy, and catalytic performances in hydrotreating. By varying the flame mixing distances (81–175 mm) the amount of CoAl2O4 could be minimized. As evidenced by UV–vis spectroscopy, CoAl2O4 was detected only at short flame mixing distances, where the flame conditions resemble one-nozzle FSP. Raman spectroscopy revealed that β-CoMoO4 was a component of all the catalysts (in the as-prepared oxidic form) together with alumina supported MoO x surface species. The only phase detected with XRD was γ-Al2O3. The FSP synthesized oxidic catalysts were activated by sulfidation without further heat treatments. The hydrodesulfurization activity of the best two-nozzle FSP catalysts, compared to the one-nozzle FSP catalysts, improved from 75 to 91 % activity relative to a commercial reference catalyst and the hydrodenitrogenation activity improved from 70 to 90 % relative activity. This suggests that better promotion of the active molybdenum sulfide phase was achieved when using two-nozzle FSP synthesis, probably due to less formation of the undesired phase CoAl2O4, which makes Co unavailable for promotion.

Graphical Abstract


Flame spray pyrolysis Hydrotreating Cobalt–molybdenum Nanoparticle Sulfidation 



Financial support from The Danish Council for Strategic Research (DSF: 2106-08-0039) and the German Research Foundation (DFG: MA 3333/2-1) is acknowledged. We are very grateful to Pablo Beato (Haldor Topsøe A/S) for supporting the Raman measurements and to Thomas W. Hansen and Jakob B. Wagner (DTU-CEN) for supporting the TEM measurements. MH thanks DTU Chemical Engineering for co-funding a PhD scholarship.


  1. 1.
    Topsøe H, Clausen BS, Massoth FE (1996) In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 11. Springer, BerlinGoogle Scholar
  2. 2.
    Prins R (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim, pp 2695–2718Google Scholar
  3. 3.
    Williams CC, Ekerdt JG, Jehng JM, Hardcastle FD, Wachs IE (1991) J Phys Chem 95:8791–8797CrossRefGoogle Scholar
  4. 4.
    Wivel C, Clausen BS, Candia R, Mørup S, Topsøe H (1984) J Catal 87:497–513CrossRefGoogle Scholar
  5. 5.
    Perez-Martinez DJ, Eloy P, Gaigneaux EM, Giraldo SA, Centeno A (2010) Appl Catal A 390:59–70Google Scholar
  6. 6.
    Clausen BS, Topsøe H, Candia R, Villadsen J, Lengeler B, Als-Nielsen J, Christensen F (1981) J Phys Chem 85:3868–3872CrossRefGoogle Scholar
  7. 7.
    Wivel C, Candia R, Clausen BS, Mørup S, Topsøe H (1981) J Catal 68:453–463CrossRefGoogle Scholar
  8. 8.
    Besenbacher F, Brorson M, Clausen BS, Helveg S, Hinnemann B, Kibsgaard J, Lauritsen JV, Moses PG, Nørskov JK, Topsøe H (2008) Catal Today 130:86–96CrossRefGoogle Scholar
  9. 9.
    Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, Nørskov JK, Clausen BS, Topsøe H, Lægsgaard E, Besenbacher F (2007) J Catal 249:220–233CrossRefGoogle Scholar
  10. 10.
    Tuxen A, Kibsgaard J, Gøbel H, Lægsgaard E, Topsøe H, Lauritsen JV, Besenbacher F (2010) ACS Nano 4:4677–4682CrossRefGoogle Scholar
  11. 11.
    Kibsgaard J, Tuxen A, Knudsen KG, Brorson M, Topsøe H, Lægsgaard E, Lauritsen JV, Besenbacher F (2010) J Catal 272:195–203CrossRefGoogle Scholar
  12. 12.
    Brorson M, Carlsson A, Topsøe H (2007) Catal Today 123:31–36CrossRefGoogle Scholar
  13. 13.
    Carlsson A, Brorson M, Topsøe H (2006) J Microsc 223:179–181CrossRefGoogle Scholar
  14. 14.
    Hansen LP, Ramasse QM, Kisielowski C, Brorson M, Johnson E, Topsøe H, Helveg S (2011) Angew Chem Int Ed Eng 123:10335–10338CrossRefGoogle Scholar
  15. 15.
    Kisielowski C, Ramasse QM, Hansen LP, Brorson M, Carlsson A, Molenbroek AM, Topsøe H, Helveg S (2010) Angew Chem Int Ed Engl 49:2708–2710CrossRefGoogle Scholar
  16. 16.
    Høj M, Linde K, Hansen TK, Brorson M, Jensen AD, Grunwaldt J-D (2011) Appl Catal A 397:201–208Google Scholar
  17. 17.
    Teoh WY, Amal R, Mädler L (2010) Nanoscale 2:1324–1347CrossRefGoogle Scholar
  18. 18.
    Strobel R, Mädler L, Piacentini M, Maciejewski M, Baiker A, Pratsinis SE (2006) Chem Mater 18:2532–2537CrossRefGoogle Scholar
  19. 19.
    Ramin M, van Vegten N, Grunwaldt J-D, Baiker A (2006) J Mol Catal A 258:165–171CrossRefGoogle Scholar
  20. 20.
    Casapu M, Grunwaldt JD, Maciejewski M, Baiker A, Wittrock M, Göbel U, Eckhoff S (2007) Top Catal 42–43:3–7CrossRefGoogle Scholar
  21. 21.
    Mädler L, Kammler HK, Mueller R, Pratsinis SE (2002) J Aerosol Sci 33:369–389CrossRefGoogle Scholar
  22. 22.
    Heine MC, Mädler L, Jossen R, Pratsinis SE (2006) Combust Flame 144:809–820CrossRefGoogle Scholar
  23. 23.
    Gröhn AJ, Pratsinis SE, Wegner K (2012) Chem Eng J 191:491–502CrossRefGoogle Scholar
  24. 24.
    Rodriguez JA, Chaturvedi S, Hanson JC, Albornoz A, Brito JL (1998) J Phys Chem B 102:1347–1355CrossRefGoogle Scholar
  25. 25.
    Rodriguez JA, Kim JY, Hanson JC, Brito JL (2002) Catal Lett 82:103–109CrossRefGoogle Scholar
  26. 26.
    Strobel R, Stark W, Mädler L, Pratsinis S, Baiker A (2003) J Catal 213:296–304CrossRefGoogle Scholar
  27. 27.
    Azurdia J, Marchal J, Laine RM (2006) J Am Ceram Soc 89:2749–2756Google Scholar
  28. 28.
    Laine RM, Marchal JC, Sun HP, Pan XQ (2006) Nat Mater 5:710–712CrossRefGoogle Scholar
  29. 29.
    Hinklin T, Toury B, Gervais C, Babonneau F, Gislason JJ, Morton RW, Laine RM (2004) Chem Mater 16:21–30CrossRefGoogle Scholar
  30. 30.
    Zhou RS, Snyder RL (1991) Acta Crystallogr Sect B 47:617–630CrossRefGoogle Scholar
  31. 31.
    Dhas NA, Gedanken A (1997) J Phys Chem B 101:9495–9503CrossRefGoogle Scholar
  32. 32.
    Saleem SS (1987) Infrared Phys 27:309–315CrossRefGoogle Scholar
  33. 33.
    Ono T, Ogata N, Miyaryo Y (1996) J Catal 161:78–86CrossRefGoogle Scholar
  34. 34.
    Chen K, Xie S, Bell AT, Iglesia E (2001) J Catal 198:232–242CrossRefGoogle Scholar
  35. 35.
    Digne M, Marchand K, Bourges P (2007) Oil Gas Sci Technol Rev IFP 62:91–99CrossRefGoogle Scholar
  36. 36.
    Debecker DP, Schimmoeller B, Stoyanova M, Poleunis C, Bertrand P, Rodemerck U, Gaigneaux EM (2011) J Catal 277:154–163CrossRefGoogle Scholar
  37. 37.
    De Boer M, Vandillen AJ, Koningsberger DC, Geus JW, Vuurman MA, Wachs IE (1991) Catal Lett 11:227–239CrossRefGoogle Scholar
  38. 38.
    Wu L, Jiao D, Wang J-A, Chen L, Cao F (2009) Catal Commun 11:302–305CrossRefGoogle Scholar
  39. 39.
    Herbst K, Brorson M, Carlsson A (2010) J Mol Catal A 325:1–7CrossRefGoogle Scholar
  40. 40.
    Rinaldi N, Kubota T, Okamoto Y (2009) Ind Eng Chem Res 48:10414–10424CrossRefGoogle Scholar
  41. 41.
    Pawelec B, Castaño P, Zepeda TA (2008) Appl Surf Sci 254:4092–4102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Martin Høj
    • 1
  • David K. Pham
    • 2
  • Michael Brorson
    • 3
  • Lutz Mädler
    • 2
  • Anker Degn Jensen
    • 1
  • Jan-Dierk Grunwaldt
    • 1
    • 4
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of Denmark (DTU)LyngbyDenmark
  2. 2.Department of Production EngineeringFoundation Institute of Material Science (IWT), University of BremenBremenGermany
  3. 3.Haldor Topsøe A/SLyngbyDenmark
  4. 4.Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations