Catalysis Letters

, Volume 143, Issue 5, pp 375–385 | Cite as

Towards Realistic Surface Science Models of Heterogeneous Catalysts: Influence of Support Hydroxylation and Catalyst Preparation Method

  • Martin SterrerEmail author
  • Hans-Joachim Freund


Surface science studies allow processes important for heterogeneous catalysis to be investigated in greatest detail. Starting from the simplest model of a catalytic surface, a metal single-crystal surface under ultrahigh vacuum conditions, enormous progress has been made in the last decades towards extending the surface science of catalysis to technically more relevant dimensions. In this perspective, we highlight recent work, including our own, dealing with the influence of water on metal-support interactions in surface science studies of oxide-supported metal nanoparticle model catalysts. In particular, the effect of hydroxyl groups on nucleation and sintering of metal nanoparticles, and surface science investigations into catalyst preparation using wet-chemical procedures are addressed.

Graphical Abstract


Heterogeneous catalysis < catalysis Oxide supports < preparation and materials Metal-support interaction < preparation and materials Characterization < methodology and phenomena Thin films < methodology and phenomena Spectroscopy and general characterisation 



We thank all present and previous coworkers who contributed to the work presented in this article, in particular Matthew A. Brown, Esther Carrasco, Yuichi Fujimori, Hui-Feng Wang and William E. Kaden. Financial support by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft through the Cluster of Excellence UNICAT (administered by TU Berlin) is gratefully acknowledged.


  1. 1.
    Ertl G (1994) Surf Sci 299:742CrossRefGoogle Scholar
  2. 2.
    Marsh AL, Ribeiro FH, Somorjai GA (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, Weinheim, p 1259Google Scholar
  3. 3.
    Zaera F (2001) Prog Surf Sci 69:1CrossRefGoogle Scholar
  4. 4.
    Somorjai GA, York RL, Butcher D, Park JY (2007) Phys Chem Chem Phys 9:3500CrossRefGoogle Scholar
  5. 5.
    Freund HJ, Kuhlenbeck H, Libuda J, Rupprechter G, Bäumer M, Hamann H (2001) Top Catal 15:201CrossRefGoogle Scholar
  6. 6.
    Gunter PLJ, Niemantsverdriet JW, Ribeiro FH, Somorjai GA (1997) Catal Rev-Sci Eng 39:77CrossRefGoogle Scholar
  7. 7.
    Rupprechter G (2007) In: Gates BC and Knözinger H (eds) Advances in catalysis. Elsevier Academic Press Inc, San Diego, p 133Google Scholar
  8. 8.
    Bluhm H, Hävecker M, Knop-Gericke A, Kiskinova M, Schlögl R, Salmeron M (2007) MRS Bull 32:1022CrossRefGoogle Scholar
  9. 9.
    Hendriksen BLM, Frenken JWM (2002) Phys Rev Lett 89:046101CrossRefGoogle Scholar
  10. 10.
    Campbell CT (1997) Surf Sci Rep 27:1CrossRefGoogle Scholar
  11. 11.
    Freund HJ (1997) Angew Chem Int Ed 36:452CrossRefGoogle Scholar
  12. 12.
    Bäumer M, Freund HJ (1999) Prog Surf Sci 61:127CrossRefGoogle Scholar
  13. 13.
    Henry CR (1998) Surf Sci Rep 31:235CrossRefGoogle Scholar
  14. 14.
    McClure SM, Goodman DW (2011) Top Catal 54:349CrossRefGoogle Scholar
  15. 15.
    Freund HJ, Goodman DW (2008) In: Ertl G, Knözinger H, Schüth F and Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, Weinheim, p 1309Google Scholar
  16. 16.
    Sterrer M, Risse T, Heyde M, Rust HP, Freund HJ (2007) Phys Rev Lett 98:206103CrossRefGoogle Scholar
  17. 17.
    Yulikov M, Sterrer M, Heyde M, Rust HP, Risse T, Freund HJ, Pacchioni G, Scagnelli A (2006) Phys Rev Lett 96:146804CrossRefGoogle Scholar
  18. 18.
    Sterrer M, Fischbach E, Risse T, Freund HJ (2005) Phys Rev Lett 94:186101CrossRefGoogle Scholar
  19. 19.
    Sterrer M, Heyde M, Novicki M, Nilius N, Risse T, Rust HP, Pacchioni G, Freund HJ (2006) J Phys Chem B 110:46CrossRefGoogle Scholar
  20. 20.
    Sterrer M, Yulikov M, Fischbach E, Heyde M, Rust HP, Pacchioni G, Risse T, Freund HJ (2006) Angew Chem Int Ed 45:2630CrossRefGoogle Scholar
  21. 21.
    Boehm H-P, Knözinger H (1983) In: Anderson JR and Boudart M (eds) Catalysis science and technology. Springer, Berlin, p 39Google Scholar
  22. 22.
    Carrasco J, Illas F, Lopez N (2008) Phys Rev Lett 100:016101CrossRefGoogle Scholar
  23. 23.
    Scamehorn CA, Harrison NM, McCarthy MI (1994) J Chem Phys 101:1547CrossRefGoogle Scholar
  24. 24.
    Liu LM, Zhang CJ, Thornton G, Michaelides A (2010) Phys Rev B 82:161415CrossRefGoogle Scholar
  25. 25.
    Hugenschmidt MB, Gamble L, Campbell CT (1994) Surf Sci 302:329CrossRefGoogle Scholar
  26. 26.
    Kurtz RL, Stockbauer R, Madey TE, Roman E, Desegovia JL (1989) Surf Sci 218:178CrossRefGoogle Scholar
  27. 27.
    Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE, Ogletree DF, Ogasawara H, Nilsson A, Salmeron M (2007) J Phys Chem C 111:8278CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Fenter P, Sturchio NC, Bedzyk MJ, Machesky ML, Wesolowski DJ (2007) Surf Sci 601:1129CrossRefGoogle Scholar
  29. 29.
    Liu P, Kendelewicz T, Gordon GE, Parks GA (1998) Surf Sci 412–13:287CrossRefGoogle Scholar
  30. 30.
    Carrasco E, Brown MA, Sterrer M, Freund HJ, Kwapien K, Sierka M, Sauer J (2010) J Phys Chem C 114:18207CrossRefGoogle Scholar
  31. 31.
    Mejias JA, Berry AJ, Refson K, Fraser DG (1999) Chem Phys Lett 314:558CrossRefGoogle Scholar
  32. 32.
    Eng PJ, Trainor TP, Brown GE, Waychunas GA, Newville M, Sutton SR, Rivers ML (2000) Science 288:1029CrossRefGoogle Scholar
  33. 33.
    Wang XG, Chaka A, Scheffler M (2000) Phys Rev Lett 84:3650CrossRefGoogle Scholar
  34. 34.
    Rohrbach A, Hafner J, Kresse G (2004) Phys Rev B 70:125426CrossRefGoogle Scholar
  35. 35.
    Yamamoto S, Kendelewicz T, Newberg JT, Ketteler G, Starr DE, Mysak ER, Andersson KJ, Ogasawara H, Bluhm H, Salmeron M, Brown GE, Nilsson A (2010) J Phys Chem C 114:2256CrossRefGoogle Scholar
  36. 36.
    Hass KC, Schneider WF, Curioni A, Andreoni W (1998) Science 282:265CrossRefGoogle Scholar
  37. 37.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598:226CrossRefGoogle Scholar
  38. 38.
    Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Nature Mater 5:189CrossRefGoogle Scholar
  39. 39.
    Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Laegsgaard E, Hammer B, Besenbacher F (2007) Science 315:1692CrossRefGoogle Scholar
  40. 40.
    Wang JG, Hammer B (2006) Phys Rev Lett 97:136107CrossRefGoogle Scholar
  41. 41.
    Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) J Phys Chem B 107:534CrossRefGoogle Scholar
  42. 42.
    Libuda J, Frank M, Sandell A, Andersson S, Bruhwiler PA, Bäumer M, Martensson N, Freund HJ (1997) Surf Sci 384:106CrossRefGoogle Scholar
  43. 43.
    Starr DE, Diaz SF, Musgrove JE, Ranney JT, Bald DJ, Nelen L, Ihm H, Campbell CT (2002) Surf Sci 515:13CrossRefGoogle Scholar
  44. 44.
    Günster J, Krischok S, Kempter V, Stultz J, Goodman DW (2002) Surf Rev Lett 9:1511CrossRefGoogle Scholar
  45. 45.
    Heemeier M, Frank M, Libuda J, Wolter K, Kuhlenbeck H, Bäumer M, Freund HJ (2000) Catal Lett 68:19CrossRefGoogle Scholar
  46. 46.
    Heemeier M, Stempel S, Shaikhutdinov SK, Libuda J, Bäumer M, Oldman RJ, Jackson SD, Freund HJ (2003) Surf Sci 523:103CrossRefGoogle Scholar
  47. 47.
    Chambers SA, Droubay T, Jennison DR, Mattsson TR (2002) Science 297:827CrossRefGoogle Scholar
  48. 48.
    Niu C, Shepherd K, Martini D, Tong J, Kelber JA, Jennison DR, Bogicevic A (2000) Surf Sci 465:163CrossRefGoogle Scholar
  49. 49.
    Lazzari R, Jupille J (2005) Phys Rev B 71:045409CrossRefGoogle Scholar
  50. 50.
    Fu Q, Wagner T, Rühle M (2006) Surf Sci 600:4870CrossRefGoogle Scholar
  51. 51.
    Jensen MCR, Venkataramani K, Helveg S, Clausen BS, Reichling M, Besenbacher F, Lauritsen JV (2008) J Phys Chem C 112:16953CrossRefGoogle Scholar
  52. 52.
    Lodziana Z, Norskov JK (2001) J Chem Phys 115:11261CrossRefGoogle Scholar
  53. 53.
    Sanz JF, Hernandez NC (2005) Phys Rev Lett 94:016104CrossRefGoogle Scholar
  54. 54.
    Vayssilov GN, Gates BC, Rösch N (2003) Angew Chem Int Ed 42:1391CrossRefGoogle Scholar
  55. 55.
    Vayssilov GN, Rösch N (2005) Phys Chem Chem Phys 7:4019CrossRefGoogle Scholar
  56. 56.
    Hu CH, Chizallet C, Mager-Maury C, Corral-Valero M, Sautet P, Toulhoat H, Raybaud P (2010) J Catal 274:99CrossRefGoogle Scholar
  57. 57.
    Weber WA, Gates BC (1997) J Phys Chem B 101:10423CrossRefGoogle Scholar
  58. 58.
    Brown MA, Carrasco E, Sterrer M, Freund HJ (2010) J Am Chem Soc 132:4064CrossRefGoogle Scholar
  59. 59.
    Brown MA, Fujimori Y, Ringleb F, Shao X, Stavale F, Nilius N, Sterrer M, Freund HJ (2011) J Am Chem Soc 133:10668CrossRefGoogle Scholar
  60. 60.
    Bond GC, Thompson DT (2000) Gold Bulletin 33:41CrossRefGoogle Scholar
  61. 61.
    Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767CrossRefGoogle Scholar
  62. 62.
    Cunningham DAH, Vogel W, Haruta M (1999) Catal Lett 63:43CrossRefGoogle Scholar
  63. 63.
    Cunningham DAH, Vogel W, Kageyama H, Tsubota S, Haruta M (1998) J Catal 177:1CrossRefGoogle Scholar
  64. 64.
    Jia CJ, Liu Y, Bongard H, Schüth F (2010) J Am Chem Soc 132:1520CrossRefGoogle Scholar
  65. 65.
    Takei T, Okuda I, Bando KK, Akita T, Haruta M (2010) Chem Phys Lett 493:207CrossRefGoogle Scholar
  66. 66.
    Qiao BT, Zhang J, Liu LQ, Deng YQ (2008) Appl Catal A 340:220CrossRefGoogle Scholar
  67. 67.
    Veith GM, Lupini AR, Dudney NJ (2009) J Phys Chem C 113:269CrossRefGoogle Scholar
  68. 68.
    Wlodarczyk R, Sierka M, Kwapien K, Sauer J, Carrasco E, Aumer A, Gomes JF, Sterrer M, Freund HJ (2011) J Phys Chem C 115:6764CrossRefGoogle Scholar
  69. 69.
    Carrasco E, Aumer A, Gomes JF, Fujimori Y, Sterrer M (2013) Chem Commun. doi: 10.1039/c2cc37148k Google Scholar
  70. 70.
    Chizallet C, Costentin G, Che M, Delbecq F, Sautet P (2007) J Am Chem Soc 129:6442CrossRefGoogle Scholar
  71. 71.
    Sterrer M, Yulikov M, Risse T, Freund HJ, Carrasco J, Illas F, Di Valentin C, Giordano L, Pacchioni G (2006) Angew Chem Int Ed 45:2633CrossRefGoogle Scholar
  72. 72.
    Jiang DE, Overbury SH, Dai S (2011) J Phys Chem Lett 2:1211CrossRefGoogle Scholar
  73. 73.
    Jeon J, Soon A, Yeo JN, Park J, Hong S, Cho K, Yu BD (2012) J Phys Soc Jpn 81:054601CrossRefGoogle Scholar
  74. 74.
    Gallei EF, Hesse M, Schwab E (2008) In: Ertl G, Knözinger H, Schüth F and Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, Weinheim, p 57Google Scholar
  75. 75.
    Regalbuto JR (ed) (2007) Catalyst preparation—science and engineering. CRC Press, Boca RatonGoogle Scholar
  76. 76.
    Hao X, Spieker WA, Regalbuto JR (2003) J Colloid Interface Sci 267:259CrossRefGoogle Scholar
  77. 77.
    Brunelle JP (1978) Pure Appl Chem 50:1211CrossRefGoogle Scholar
  78. 78.
    Lambert JF, Che M (2000) J Mol Catal A-Chem 162:5CrossRefGoogle Scholar
  79. 79.
    Jiao L, Regalbuto JR (2008) J Catal 260:329CrossRefGoogle Scholar
  80. 80.
    Mondloch JE, Bayram E, Finke RG (2012) J Mol Catal A-Chem 355:1CrossRefGoogle Scholar
  81. 81.
    Espinosa-Alonso L, Lysova AA, Peinder P, de Jong KP, Koptyug IV, Weckhuysen BM (2009) J Am Chem Soc 131:6525CrossRefGoogle Scholar
  82. 82.
    Chupas PJ, Chapman KW, Jennings G, Lee PL, Grey CP (2007) J Am Chem Soc 129:13822CrossRefGoogle Scholar
  83. 83.
    Banerjee R, Crozier PA (2012) J Phys Chem C 116:11486CrossRefGoogle Scholar
  84. 84.
    Nickl J, Schlögl R, Baiker A, Knözinger H, Ertl G (1989) Catal Lett 3:379CrossRefGoogle Scholar
  85. 85.
    Yeung KL, Wolf EE (1991) J Vac Sci Technol B 9:798CrossRefGoogle Scholar
  86. 86.
    Yeung KL, Wolf EE (1992) J Catal 135:13CrossRefGoogle Scholar
  87. 87.
    Atamny F, Baiker A (1998) Appl Catal A 173:201CrossRefGoogle Scholar
  88. 88.
    Atamny F, Duff D, Baiker A (1995) Catal Lett 34:305CrossRefGoogle Scholar
  89. 89.
    Niemantsverdriet JW, Engelen AFP, de Jong AM, Wieldraaijer W, Kramer GJ (1999) Appl Surf Sci 144–45:366CrossRefGoogle Scholar
  90. 90.
    Thune PC, Niemantsverdriet JW (2009) Surf Sci 603:1756CrossRefGoogle Scholar
  91. 91.
    Vanhardeveld RM, Gunter PLJ, Vanijzendoorn LJ, Wieldraaijer W, Kuipers EW, Niemantsverdriet JW (1995) Appl Surf Sci 84:339CrossRefGoogle Scholar
  92. 92.
    Park C, Fenter PA, Sturchio NC, Regalbuto JR (2005) Phys Rev Lett 94:076104CrossRefGoogle Scholar
  93. 93.
    Tougerti A, Llorens I, D’Acapito F, Fonda E, Hazemann JL, Joly Y, Thiaudiere D, Che M, Carrier X (2012) Angew Chem Int Ed 51:7697CrossRefGoogle Scholar
  94. 94.
    Wang HF, Ariga H, Dowler R, Sterrer M, Freund HJ (2012) J Catal 286:1CrossRefGoogle Scholar
  95. 95.
    Wang HF, Kaden WE, Dowler R, Sterrer M, Freund HJ (2012) Phys Chem Chem Phys 14:11525CrossRefGoogle Scholar
  96. 96.
    Milic NB, Bugarcic ZD (1984) Transit Met Chem 9:173CrossRefGoogle Scholar
  97. 97.
    van Middlesworth JM, Wood SA (1999) Geochim Cosmochim Acta 63:1751CrossRefGoogle Scholar
  98. 98.
    Didillon B, Merlen E, Pages T, Uzio D (1998) Stud Surf Sci Catal 118:41CrossRefGoogle Scholar
  99. 99.
    Regalbuto JR, Navada A, Shadid S, Bricker ML, Chen Q (1999) J Catal 184:335CrossRefGoogle Scholar
  100. 100.
    Shah AM, Regalbuto JR (1994) Langmuir 10:500CrossRefGoogle Scholar
  101. 101.
    Rainer DR, Wu MC, Mahon DI, Goodman DW (1996) J Vac Sci Technol A 14:1184CrossRefGoogle Scholar
  102. 102.
    Wolter K, Seiferth O, Kuhlenbeck H, Bäumer M, Freund HJ (1998) Surf Sci 399:190CrossRefGoogle Scholar
  103. 103.
    Meyer R, Shaikhutdinov SK, Freund HJ (2004) Z Phys Chemie 218:905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical PhysicsFritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations