Advertisement

Catalysis Letters

, Volume 143, Issue 1, pp 58–60 | Cite as

The Oxygen Reduction Reaction on Nitrogen-Doped Graphene

  • Felix Studt
Article

Abstract

The oxygen reduction reaction on a graphene sheet with 6.3 % doping of nitrogen is analyzed using density functional theory calculations. It is found that all intermediates involved in the oxygen reduction reaction bind on the carbon atom next to the nitrogen dopant. The first reduction step to produce the OOH* intermediate is only moderately downhill in free energy while further reduction to O* and OH* are more exothermic. The reduction from step from O* to OH* is found responsible for the experimentally observed overpotential.

Graphical Abstract

Keywords

Electro-catalysis Oxygen reduction reaction Nitrogen-doped carbon Density functional theory calculations Reaction mechanism 

Notes

Acknowledgments

Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.

Supplementary material

10562_2012_918_MOESM1_ESM.docx (271 kb)
Supplementary material 1 (DOCX 270 kb)

References

  1. 1.
    Morozan A, Jousselme B, Palacin S (2011) Energy Environ Sci 4:1238CrossRefGoogle Scholar
  2. 2.
    Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Science 324:71CrossRefGoogle Scholar
  3. 3.
    Stamenkovic VR, Fowler B, Mun BS, Wang GW, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493CrossRefGoogle Scholar
  4. 4.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552CrossRefGoogle Scholar
  5. 5.
    Wang C, Li D, Chi M, Pearson J, Rankin RB, Greeley J, Duan Z, Wang G, van der Vliet D, More KL, Markovic NM, Stamenkovic VR (2012) J Phys Chem Lett 3:1668CrossRefGoogle Scholar
  6. 6.
    Wang C, Markovic NM, Stamenkovic VR (2012) ACS Catal 2:891CrossRefGoogle Scholar
  7. 7.
    Bing Y, Liu H, Ghosh D, Zhang J (2010) Chem Soc Rev 39:2184CrossRefGoogle Scholar
  8. 8.
    Liu R, Wu DQ, Feng XL, Müllen K (2010) Angew Chem Int Ed 49:2565CrossRefGoogle Scholar
  9. 9.
    Yang W, Fellinger TP, Antonietti M (2011) J Am Chem Soc 133:206CrossRefGoogle Scholar
  10. 10.
    Wang Y, Wang X, Antonietti M (2012) Angew Chem Int Ed 51:68CrossRefGoogle Scholar
  11. 11.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760CrossRefGoogle Scholar
  12. 12.
    Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B 79:89CrossRefGoogle Scholar
  13. 13.
    Zheng Y, Jiao Y, Chen J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) J Am Chem Soc 133:20116CrossRefGoogle Scholar
  14. 14.
    Okamoto Y (2009) Appl Surf Sci 256:335CrossRefGoogle Scholar
  15. 15.
    Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787CrossRefGoogle Scholar
  16. 16.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886CrossRefGoogle Scholar
  17. 17.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) J Electroanal Chem 607:83CrossRefGoogle Scholar
  18. 18.
    Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK (2012) Phys Chem Chem Phys 14:1235CrossRefGoogle Scholar
  19. 19.
    Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) Energy Environ Sci 3:1311CrossRefGoogle Scholar
  20. 20.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  21. 21.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm J, Strange M, Trisaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202CrossRefGoogle Scholar
  22. 22.
    Wellendorf J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149CrossRefGoogle Scholar
  23. 23.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  24. 24.
    Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178–184CrossRefGoogle Scholar
  25. 25.
    Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Phys Chem Chem Phys 9:3241CrossRefGoogle Scholar
  26. 26.
    Tripković V, Skúlason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975CrossRefGoogle Scholar
  27. 27.
    Karlberg GS, Wahnström G (2004) Phys Rev Lett 92:136103CrossRefGoogle Scholar
  28. 28.
    Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Chem Sci 2:446–450CrossRefGoogle Scholar
  29. 29.
    Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) J Am Chem Soc 132:11642CrossRefGoogle Scholar
  30. 30.
    Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Energy Environ Sci 4:675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations