Catalysis Letters

, Volume 142, Issue 10, pp 1153–1166 | Cite as

Methanol Synthesis

  • K. C. Waugh


Methanol, like ammonia, is one of the key industrial chemicals produced by heterogeneous catalysis. As with the original ammonia catalyst (Fe/K/Al2O3), so with methanol, the original methanol synthesis catalyst, ZnO, was discovered by Alwin Mittasch. This was translated into an industrial process in which methanol was produced from CO/H2 at 400 °C and 200 atm. Again, as with the ammonia catalyst where the final catalyst which is currently used was achieved only after exhaustive screening of putative “promoters”, so with methanol, exhaustive screening of additives was undertaken to promote the activity of the ZnO. Early successful promoters were Al2O3 and Cr2O3 which enhanced the stability of the ZnO but not its activity. The addition of CuO was found to increase the activity of the ZnO but the catalyst so produced was short lived. Current methanol synthesis catalysts are fundamentally Cu/ZnO/Al2O3, having high CuO contents of ~60 % with ZnO ~ 30 % and Al2O3 ~ 10 %. Far from promoting the activity of the ZnO by incorporation of CuO, the active component of these Cu/ZnO/Al2O3 catalysts is Cu metal with the ZnO simply being involved as the preferred support. Other supports for the Cu metal, e.g. Al2O3, MgO, MnO, Cr2O3, ZrO2 and even SiO2 can also be used. In all of these catalysts the activity scales with the Cu metal area. The original feed has now changed from CO/H2 to CO/CO2/H2 (10:10:80), radiolabelling studies having provided the unlikely discovery that it is the CO2 molecule which is hydrogenated to methanol; the CO molecule acts as a reducing agent. The CO2 is transformed to methanol on the Cu through the intermediacy of an adsorbed formate species. These Cu/ZnO/Al2O3 catalysts now operate at ~230° and between 50 and 100 atm. This important step change in the activity of methanol synthesis has resulted in a significant reduction in the energy required to produce methanol. The “step change” however has been incremental. It has been obtained on the basis of fundamental knowledge provided by a combination of surface science techniques, e.g. LEED, scanning tunnelling microscope, TPD, temperature programmed reaction spectroscopy, combined with catalytic mechanistic studies, including radiolabelling studies and chemisorption studies including reactive chemisorption studies, e.g. N2O reactive frontal chromatography.


Formate intermediate Carbonate intermediate Methoxy species Copper metal area Reactive frontal chromatography 


  1. 1.
    Anilin B, Fabik S (1923) DR Patent 415,686; 441,443; 462,837Google Scholar
  2. 2.
    Anilin B, Fabik S (1923) US Patent 1,558,559; 1,569,775Google Scholar
  3. 3.
    Schmidt O, Ufers K (1928) D Patent 571,355; 571,356; 580,705Google Scholar
  4. 4.
    Natta G (1955) In: Emmett PH (ed) Catalysis, vol III. Reinhold Publishing Corp, New York, p 373Google Scholar
  5. 5.
    Davies P, Snowdon FF, Bridger GW, Hughes DO, Young PW (1966) UK Patent 101087Google Scholar
  6. 6.
    Andrew SPS, private communicationGoogle Scholar
  7. 7.
    Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Taylor Francis Group, Boca RatonGoogle Scholar
  8. 8.
    Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP (1979) J Catal 56:407CrossRefGoogle Scholar
  9. 9.
    Bulka JB, Herman RG, Klier K, Simmons GW (1979) J Phys Chem 83:3118CrossRefGoogle Scholar
  10. 10.
    Mehta S, Simmons GW, Klier K, Herman RG (1979) J Catal 57:339CrossRefGoogle Scholar
  11. 11.
    Klier K (1982) Adv Catal 31:243CrossRefGoogle Scholar
  12. 12.
    Klier K (1984) Appl Surf Sci 19:267CrossRefGoogle Scholar
  13. 13.
    Kagan YuB, Liberov LG, Slivinsky EV, Lockev SM, Lin GI, Ya Rozovsky A, Bashkirov AN (1975) Dokl Acad Nauk SSSR 222:1093Google Scholar
  14. 14.
    Chinchen GC, Waugh KC, Whan DA (1986) Appl Catal 25:101CrossRefGoogle Scholar
  15. 15.
    Chinchen GC, Denny PJ, Parker DG, Short GD, Spencer MS, Waugh KC, Whan DA (1984) Prepr Am Chem Soc Div Fuel Chem 29:178Google Scholar
  16. 16.
    Ertl G (1967) Surf Sci 6:208CrossRefGoogle Scholar
  17. 17.
    Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) J Catal 103:79CrossRefGoogle Scholar
  18. 18.
    Waugh KC (1988) Appl Catal 43:315CrossRefGoogle Scholar
  19. 19.
    Whan DA, private communicationGoogle Scholar
  20. 20.
    Pan WX, Cao R, Roberts DL, Griffin GL (1988) J Catal 114:440CrossRefGoogle Scholar
  21. 21.
    Muhler M, Nielsen LP, Tornqvist E, Clausen BS, Topsoe H (1992) Catal Lett 14:241CrossRefGoogle Scholar
  22. 22.
    Topsoe N, Topsoe H (1999) Top Catal 8:267CrossRefGoogle Scholar
  23. 23.
    Dell RM, Stone FS, Tiley PF (1953) Trans Faraday Soc 49:195CrossRefGoogle Scholar
  24. 24.
    Haddon RA, Vandervell HD, Waugh KC, Webb G (1988) Catal Lett 1:27CrossRefGoogle Scholar
  25. 25.
    Elliott AJ, Hadden RA, Tabatabaei J, Waugh KC, Zemicael FW (1995) J Catal 157:153CrossRefGoogle Scholar
  26. 26.
    Nakamura J, Rodriguez JA, Campbell CT (1989) J Phys Condens Matter 1:SB149CrossRefGoogle Scholar
  27. 27.
    Schneider T, Hirschwald W (1992) Catal Lett 14:192CrossRefGoogle Scholar
  28. 28.
    Fu SS, Somorjai GA (1990) Surf Sci 237:87CrossRefGoogle Scholar
  29. 29.
    Fu SS, Somorjai GA (1992) Surf Sci 262:68CrossRefGoogle Scholar
  30. 30.
    Bowker M, Hadden RA, Houghton H, Hyland JNK, Waugh KC (1988) J Catal 109(2):263CrossRefGoogle Scholar
  31. 31.
    Wachs IE, Madix RJ (1978) J Catal 53:208CrossRefGoogle Scholar
  32. 32.
    Ying DHS, Madix RJ (1980) J Catal 61:48CrossRefGoogle Scholar
  33. 33.
    Bowker M, Houghton H, Waugh KC (1981) J Chem Soc Faraday Trans 1 77:3023CrossRefGoogle Scholar
  34. 34.
    Millar G, Rochester CH, Howe C, Waugh KC (1991) Mol Phys 76:833CrossRefGoogle Scholar
  35. 35.
    Bailey S, Froment GF, Snoeck GW, Waugh KC (1995) Catal Lett 30:99CrossRefGoogle Scholar
  36. 36.
    Taylor PA, Rasmussen PB, Chorkendorff I (1995) J Chem Soc Faraday Trans 91:1267CrossRefGoogle Scholar
  37. 37.
    Sakakini BH, Tabatabaei J, Watson MJ, Waugh KC, Zemicael FW (1966) Faraday Discuss 105:369CrossRefGoogle Scholar
  38. 38.
    Chinchen GC, Waugh KC (1986) J Catal 97:280CrossRefGoogle Scholar
  39. 39.
    Rasmussen PB, Holmblad PM, Christoffersen H, Taylor PA, Chorkendorff I (1993) Surf Sci 287/288:71CrossRefGoogle Scholar
  40. 40.
    Wintterlin J, Ertl G, Behn RJ (1990) Phys Rev Lett 64:1761CrossRefGoogle Scholar
  41. 41.
    Besenbacher F, Springer PT, Raun L, Olsen L, Stensgaard I, Loegsgaard E (1994) Top Catal 1:325CrossRefGoogle Scholar
  42. 42.
    Joshihara J, Parker SC, Schafer A, Campbell CT (1995) Catal Lett 31:313CrossRefGoogle Scholar
  43. 43.
    Joshihara J, Campbell CT (1996) J Catal 161:776CrossRefGoogle Scholar
  44. 44.
    Nakamura J, Campbell JM, Campbell CT (1990) J Chem Soc Faraday Trans 86:2725CrossRefGoogle Scholar
  45. 45.
    Campbell CT, Daube KA (1987) J Catal 104:109CrossRefGoogle Scholar
  46. 46.
    Muhler M, Tornqvist E, Nielsen LP, Clausen BS, Topsoe H (1994) Catal Lett 25:1CrossRefGoogle Scholar
  47. 47.
    Chinchen GC, Spencer MS, Waugh KC, Whan DA (1987) J Chem Soc Faraday Trans 183:2193Google Scholar
  48. 48.
    Bielawa H, Kurtz M, Genger J, Hinrichsen O (2001) Ind Eng Chem Res 40:2793CrossRefGoogle Scholar
  49. 49.
    Wilmer H, Hinrichsen O (2002) Catal Lett 82:117CrossRefGoogle Scholar
  50. 50.
    Hadden RA, Sakakini BH, Tabatabaei J, Waugh KC (1997) Catal Lett 44:145CrossRefGoogle Scholar
  51. 51.
    Sakakini BH, Tabatabaei J, Watson MJ, Waugh KC (2000) J Mol Catal A 162:297CrossRefGoogle Scholar
  52. 52.
    Pritchard J, Catterick T, Gupta RG (1975) Surf Sci 53:1CrossRefGoogle Scholar
  53. 53.
    Hadden RA, Lambert PJ, Ranson C (1995) Appl Catal A 122:L1CrossRefGoogle Scholar
  54. 54.
    Spitzer A, Luth H (1985) Surf Sci 152/153:543CrossRefGoogle Scholar
  55. 55.
    Au CT, Breza J, Roberts MW (1979) Chem Phys Lett 66:340CrossRefGoogle Scholar
  56. 56.
    Spitzer A, Luth H (1982) Surf Sci 120:376CrossRefGoogle Scholar
  57. 57.
    Heras JM, Viscido L (1988) Catal Rev Sci Eng 30(2):306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations