Advertisement

Catalysis Letters

, Volume 142, Issue 11, pp 1306–1311 | Cite as

Zinc-Catalyzed Deoxygenation of Sulfoxides to Sulfides Applying [B(Pin)]2 as Deoxygenation Reagents

  • Stephan EnthalerEmail author
Article

Abstract

In the present study, the zinc-catalyzed deoxygenation of aliphatic and aromatic sulfoxides in the presence of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi-1,3,2-dioxaborolane [B(Pin)]2 as reducing reagent to produce the corresponding sulfides has been investigated. After examination of various reaction parameters the abilities of catalytic amounts of Zn(OTf)2 has been proven in the deoxygenation of various sulfoxides. Especially, a high functional group tolerance was noticed for the Zn(OTf)2/B(Pin)2 system.

Graphical Abstract

Keywords

Catalysis Zinc Deoxygenation Sulfoxide Sulfide 

Notes

Acknowledgments

Financial support from the Cluster of Excellence “Unifying Concepts in Catalysis” (funded by the Deutsche Forschungsgemeinschaft and administered by the Technische Universität Berlin) is gratefully acknowledged.

References

  1. 1.
    Hille R, Reètey J, Bartlewski-Hof U, Reichenbecher W, Schink B (1999) FEMS Microbiology Rev 22:489–501CrossRefGoogle Scholar
  2. 2.
    Hille R (1996) Chem Rev 96:2757–2816CrossRefGoogle Scholar
  3. 3.
    Kisker C, Schindelin H, Rees DC (1997) Annu Rev Biochem 66:233–267CrossRefGoogle Scholar
  4. 4.
    Enemark JH, Cooney JJA, Wang J-J, Holm RH (2004) Chem Rev 104:1175–1200CrossRefGoogle Scholar
  5. 5.
    McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK (2007) Chem Rev 107:5841–5883CrossRefGoogle Scholar
  6. 6.
    Rickard D, Luther GW III (2007) Chem Rev 107:514–562CrossRefGoogle Scholar
  7. 7.
    Nicolas E, Vilaseca M, Giralt E (1995) Tetrahedron 51:5701–5710CrossRefGoogle Scholar
  8. 8.
    Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000) Angew Chem 112:2629–2633CrossRefGoogle Scholar
  9. 9.
    Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000) Angew Chem Int Ed 39:2529–2533CrossRefGoogle Scholar
  10. 10.
    Zhu Z, Espenson JH (1995) J Mol Catal A Chem 103:87–94CrossRefGoogle Scholar
  11. 11.
    Reis PM, Costa PJ, Romão CC, Fernandes JA, Calhorda MJ, Royo B (2008) Dalton Trans 13:1727–1733CrossRefGoogle Scholar
  12. 12.
    Bahrami K, Khodaei MM, Karimi A (2008) Synthesis 16:2543–2546CrossRefGoogle Scholar
  13. 13.
    Khurana JM, Sharma VS, Chacko A (2007) Tetrahedron 63:966–969CrossRefGoogle Scholar
  14. 14.
    Yoo BW, Park MC, Song MS (2007) Synth Commun 37:4079–4083CrossRefGoogle Scholar
  15. 15.
    Yoo BW, Song MS, Park MC (2007) Bull Korean Chem Soc 28:171–172CrossRefGoogle Scholar
  16. 16.
    Yoo BW, Song MS, Park MC (2007) Synth Commun 37:3089–3093CrossRefGoogle Scholar
  17. 17.
    Pandey LK, Pathak U, Rao AN (2007) Synth Commun 37:4105–4109CrossRefGoogle Scholar
  18. 18.
    Bahrami K, Khodaei MM, Khedri M (2007) Chem Lett 36:1324–1325CrossRefGoogle Scholar
  19. 19.
    Fernandes AC, Romão CC (2006) Tetrahedron 62:9650–9654CrossRefGoogle Scholar
  20. 20.
    Roy CD, Brown HC (2006) J Chem Res 10:642–644CrossRefGoogle Scholar
  21. 21.
    Raju BR, Devi G, Nongpluh YS, Saikia AK (2005) Synlett 2:358–360Google Scholar
  22. 22.
    Espenson JH (2005) Coord Chem Rev 249:329–341CrossRefGoogle Scholar
  23. 23.
    Sanz R, Escribano J, Fernández Y, Aguado R, Pedrosa MR, Arnáiz FJ (2004) Synthesis 37:1629–1632CrossRefGoogle Scholar
  24. 24.
    Harrison DJ, Tam NC, Vogels CM, Langler RF, Baker RT, Decken A, Westcott SA (2004) Tetrahedron Lett 45:8493–8496CrossRefGoogle Scholar
  25. 25.
    Kukuskin VY (1995) Coord Chem Rev 139:375–407CrossRefGoogle Scholar
  26. 26.
    Yoo BW, Choi KH, Kim DY, Choi KI, Kim JH (2003) Synth Commun 33:53–57CrossRefGoogle Scholar
  27. 27.
    Arias J, Newlands CR, Abu-Omar MM (2001) Inorg Chem 40:2185–2192CrossRefGoogle Scholar
  28. 28.
    Abu-Omar MM, Khan SI (1998) Inorg Chem 37:4979–4985CrossRefGoogle Scholar
  29. 29.
    Arterburn JB, Perry MC (1996) Tetrahedron Lett 37:7941–7944CrossRefGoogle Scholar
  30. 30.
    Abu-Omar MM, Appelman EH, Espenson JH (1996) Inorg Chem 35:7751–7757CrossRefGoogle Scholar
  31. 31.
    Kukuskin VY (1990) Russ Chem Rev 59:844–852CrossRefGoogle Scholar
  32. 32.
    Madesclaire M (1988) Tetrahedron 44:6537–6551CrossRefGoogle Scholar
  33. 33.
    Bryan JC, Stenkamp RE, Tulip TH, Mayer JM (1987) Inorg Chem 26:2283–2288CrossRefGoogle Scholar
  34. 34.
    Cha JS, Kim JE, Kim JD (1985) Tetrahedron Lett 26:6453–6456CrossRefGoogle Scholar
  35. 35.
    Brown HC, Ravindran N (1973) Synthesis 1:42–43CrossRefGoogle Scholar
  36. 36.
    Guidon Y, Atkinson JG, Morton HE (1984) J Org Chem 49:4538–4540CrossRefGoogle Scholar
  37. 37.
    Sousa SCA, Fernandes AC (2009) Tetrahedron Lett 50:6872–6876CrossRefGoogle Scholar
  38. 38.
    Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2011) Chem Eur J 17:1768–1772CrossRefGoogle Scholar
  39. 39.
    Cardoso JMS, Royo B (2012) Chem Commun 48:4944–4946CrossRefGoogle Scholar
  40. 40.
    Enthaler S, Junge K, Beller M (2008) Angew Chem 120:3363–3367CrossRefGoogle Scholar
  41. 41.
    Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317–3321CrossRefGoogle Scholar
  42. 42.
    Mimoun H, De Saint Laumer JY, Giannini L, Scopelliti R, Floriani C (1999) J Am Chem Soc 121:6158–6166CrossRefGoogle Scholar
  43. 43.
    Mimoun H (1999) J Org Chem 64:2582–2589CrossRefGoogle Scholar
  44. 44.
    Bette V, Mortreux A, Lehmann CW, Carpentier J-F (2003) Chem Commun 3:332–333CrossRefGoogle Scholar
  45. 45.
    Bette V, Mortreux A, Ferioli F, Martelli G, Savoia D, Carpentier J-F (2004) Eur J Org Chem 14:3040–3045CrossRefGoogle Scholar
  46. 46.
    Bette V, Mortreux A, Savoia D, Carpentier J-F (2004) Tetrahedron 60:2837–2842CrossRefGoogle Scholar
  47. 47.
    Mastranzo VM, Quinterno L, Anaya de Parrodi C, Juaristi E, Walsh PJ (2004) Tetrahedron 60:1781–1789CrossRefGoogle Scholar
  48. 48.
    Ushio H, Mikami K (2005) Tetrahedron Lett 46:2903–2906CrossRefGoogle Scholar
  49. 49.
    Bette V, Mortreux A, Savoia D, Carpentier J-F (2005) Adv Synth Catal 347:289–302CrossRefGoogle Scholar
  50. 50.
    Gérard S, Pressel Y, Riant O (2005) Tetrahedron Asymmetry 16:1889–1891Google Scholar
  51. 51.
    Park B-M, Mun S, Yun J (2006) Adv Synth Catal 348:1029–1032CrossRefGoogle Scholar
  52. 52.
    Bandini M, Melucci M, Piccinelli F, Sinisi R, Tommasi S, Umani-Ronchi A (2007) Chem Commun 43:4519–4521CrossRefGoogle Scholar
  53. 53.
    Inagaki T, Yamada Y, Phong LT, Furuta A, Ito J-i, Nishiyama H (2009) Synlett 2:253–256Google Scholar
  54. 54.
    Gajewy J, Kwit M, Gawroński J (2009) Adv Synth Catal 351:1055–1063CrossRefGoogle Scholar
  55. 55.
    Das S, Addis D, Zhou S, Junge K, Beller M (2010) J Am Chem Soc 132:1770–1771CrossRefGoogle Scholar
  56. 56.
    Bandini M, Cozzi PG, de Angelis M, Umani-Ronchi A (2000) Tetrahedron Lett 41:1601–1605CrossRefGoogle Scholar
  57. 57.
    Locatelli M, Cozzi PG (2003) Angew Chem Int Ed 42:4928–4930CrossRefGoogle Scholar
  58. 58.
    Marinos NA, Enthaler S, Driess M (2010) ChemCatChem 2:846–853CrossRefGoogle Scholar
  59. 59.
    Enthaler S, Eckhardt B, Inoue S, Irran E, Driess M (2010) Chem Asian J 5:2027–2035CrossRefGoogle Scholar
  60. 60.
    Enthaler S, Schröder K, Inoue S, Eckhardt B, Junge K, Beller M, Driess M (2010) Eur J Org Chem 25:4893–4901CrossRefGoogle Scholar
  61. 61.
    Enthaler S (2011) Catal Lett 141:55–61CrossRefGoogle Scholar
  62. 62.
    Someya CI, Inoue S, Irran E, Krackl S, Enthaler S (2011) Eur J Inorg Chem 2011:2691–2697CrossRefGoogle Scholar
  63. 63.
    Enthaler S, Weidauer M, Schröder F (2012) Tetrahedron Lett 53:882–885CrossRefGoogle Scholar
  64. 64.
    Enthaler S, Weidauer M (2012) Catal Lett 142:168–175CrossRefGoogle Scholar
  65. 65.
    Enthaler S, Inoue S (2012) Chem Asian J 7:169–175CrossRefGoogle Scholar
  66. 66.
    Enthaler S, Weidauer M (2012) Chem Eur J 18:1910–1913CrossRefGoogle Scholar
  67. 67.
    Someya CI, Inoue S, Krackl S, Irran E, Enthaler S (2012) Eur J Inorg Chem 8:1269–1277CrossRefGoogle Scholar
  68. 68.
    Haberberger M, Someya CI, Company A, Irran E, Enthaler S (2012) Catal Lett 142:557–565CrossRefGoogle Scholar
  69. 69.
    Enthaler S (2011) ChemCatChem 3:666–670CrossRefGoogle Scholar
  70. 70.
    Enthaler S (2011) Catal Sci Technol 1:104–110CrossRefGoogle Scholar
  71. 71.
    Enthaler S, Weidauer M (2011) Catal Lett 141:833–838CrossRefGoogle Scholar
  72. 72.
    Krackl S, Company A, Enthaler S, Driess M (2011) ChemCatChem 3:1186–1192CrossRefGoogle Scholar
  73. 73.
    Enthaler S, Krackl S, Irran E, Inoue S (2012) Catal Lett. doi: 10.1007/s10562-012-0862-9 Google Scholar
  74. 74.
    Drabowicz J, Mikolajczyk M (1976) Synthesis 8:527–528CrossRefGoogle Scholar
  75. 75.
    Bae S, Lakshman MK (2008) J Org Chem 73:1311–1319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Cluster of Excellence “Unifying Concepts in Catalysis”Technische Universität BerlinBerlinGermany

Personalised recommendations