Advertisement

Catalysis Letters

, Volume 142, Issue 9, pp 1049–1056 | Cite as

Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics

  • Jose A. Lopez-Sanchez
  • Marco Conte
  • Phil Landon
  • Wu Zhou
  • Jonathan K. Bartley
  • Stuart H. Taylor
  • Albert F. Carley
  • Christopher J. Kiely
  • Karim Khalid
  • Graham J. Hutchings
Article

Abstract

Composites of Ga2O3 clusters and zeolite ZSM-5 were evaluated for the transformation of methanol to hydrocarbons. Comparison of the activity with ZSM-5 showed that the Ga2O3 clusters are responsible for the enhanced selectivity to aromatics via contact synergy, thus showing the importance of non framework gallium species for this reaction. TEM analysis of fresh and spent catalysts allowed the identification of the formation of carbonaceous products at the Ga2O3/zeolite interface region, and this interface is also the probable location of the catalyst active sites.

Graphical Abstract

Keywords

Gallium oxide ZSM-5 Methanol Aromatics 

Notes

Acknowledgments

The authors thank SABIC for financial support.

References

  1. 1.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  2. 2.
    Klyueva NV, Tien ND, Ione KG (1985) React Kinet Catal Lett 29:427CrossRefGoogle Scholar
  3. 3.
    Hutchings GJ, Gottschalk F, Hall MVM, Hunter R (1987) J Chem Soc, Faraday Trans 1(83):571Google Scholar
  4. 4.
    Kumar N, Lindfors LE (1996) Catal Lett 38:239CrossRefGoogle Scholar
  5. 5.
    Fricke R, Kosslick H, Lischke G, Richter M (2000) Chem Rev 100:2303CrossRefGoogle Scholar
  6. 6.
    Conte M, Lopez-Sanchez JA, He Q, Morgan DJ, Ryabenkova Y, Bartley JK, Carley AF, Taylor SH, Kiely CJ, Khalid K, Hutchings GJ (2012) Catal Sci Technol 2:105CrossRefGoogle Scholar
  7. 7.
    Hashimoto S, Uwada T, Masuhara H, Asahi T (2008) J Phys Chem C 112:15089CrossRefGoogle Scholar
  8. 8.
    Serykh AI, Amiridis MD (2009) Surf Sci 603:2037CrossRefGoogle Scholar
  9. 9.
    Price GL, Kanazirev V (1990) J Catal 126:267CrossRefGoogle Scholar
  10. 10.
    Frash MV, van Santen RA (2000) J Phys Chem A 104:2468CrossRefGoogle Scholar
  11. 11.
    Hagen A, Roessner F (2000) Catal Rev 42:403CrossRefGoogle Scholar
  12. 12.
    Yoshio O, Hiroshi A, Yoko S (1988) J Chem Soc Faraday Trans 1(84):1091Google Scholar
  13. 13.
    Csicsery SM (1986) Pure Appl Chem 58:841CrossRefGoogle Scholar
  14. 14.
    Freeman D, Wells RPK, Hutchings GJ (2001) Chem Commun 1754Google Scholar
  15. 15.
    Mao R, Yao J, Sjiariel B (1990) Catal Lett 6:23CrossRefGoogle Scholar
  16. 16.
    Badran AH, Dwyer J, Evmerides NP (1997) Inorg Chim Acta 21:233CrossRefGoogle Scholar
  17. 17.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar
  18. 18.
    Kanai J, Kawata N (1990) Appl Catal 62:141CrossRefGoogle Scholar
  19. 19.
    Dwyer FG, Hanson FV, Schwartz AB (1977) US Patent 4,035,430Google Scholar
  20. 20.
    Chang CD, Lang WH (1977) US Patent 4,013,732Google Scholar
  21. 21.
    Olah GA, Molnár Á (2003) Hydrocarbon chemistry, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  22. 22.
    International Centre for Diffraction Data, Powder Diffraction File, Entry 41-1103 (1996)Google Scholar
  23. 23.
    Mansour R, Lafjah M, Djafri F, Bengueddach A (2007) J Kor Chem Soc 51:178CrossRefGoogle Scholar
  24. 24.
    Choudhary VR, Kinage AK (1995) Zeolites 15:732CrossRefGoogle Scholar
  25. 25.
    Quian L, Yan ZF (2001) Colloids Surf A 180:311CrossRefGoogle Scholar
  26. 26.
    Bleken F, Skistad W, Barbera K, Kustova M, Bordiga S, Beato P, Lillerud KP, Svelle S, Olsbye U (2001) Phys Chem Chem Phys 13:2539CrossRefGoogle Scholar
  27. 27.
    Hutchings GJ, Johnston P, Lee DF, Warwick A, Williams CD, Wilkinson M (1994) J Catal 47:177CrossRefGoogle Scholar
  28. 28.
    Kikuchi E, Ogura M, Terasaki I, Goto Y (1996) J Catal 161:465CrossRefGoogle Scholar
  29. 29.
    Freeman D, Wells RPK, Hutchings GJ (2002) J Catal 205:358CrossRefGoogle Scholar
  30. 30.
    Ozkan S, Smith MR, Driscoll SA (1992) Stud Surf Sci Catal 72:363CrossRefGoogle Scholar
  31. 31.
    Lalik E, Liu X, Klinowski J (1992) J Phys Chem 96:805CrossRefGoogle Scholar
  32. 32.
    Bayense CR, van Hoff JHC, Kentgens APM, de Haan JW (1989) J Chem Soc Chem Commun 1292Google Scholar
  33. 33.
    Weckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1998) J Catal 175:338CrossRefGoogle Scholar
  34. 34.
    Iglesia E, Baumgartner JE, Price GL (1992) J Catal 134:549CrossRefGoogle Scholar
  35. 35.
    Chen LY, Lin LW, Xu ZS, Li XS, Zhang T (1995) J Catal 157:190CrossRefGoogle Scholar
  36. 36.
    Buckles G, Hutchings GJ, Williams CD (1991) Catal Lett 11:89CrossRefGoogle Scholar
  37. 37.
    Haag WO, Lago RM, Rodewald PG (1982) J Mol Catal 17:161CrossRefGoogle Scholar
  38. 38.
    Nedomová K, Wichterlová B, Beran S, Bednárová S (1988) Catal Today 3:373CrossRefGoogle Scholar
  39. 39.
    Popova Z, Aristirova K, Dimitrov C (1990) React Kinet Catal Lett 41:369CrossRefGoogle Scholar
  40. 40.
    Mowry JR, Anderson RF, Johnson JA (1985) Oil Gas J 83:1288Google Scholar
  41. 41.
    Doolan C, Pujado PR (1989) Hydrocarbon Proc 68:72Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jose A. Lopez-Sanchez
    • 1
    • 2
  • Marco Conte
    • 1
  • Phil Landon
    • 1
  • Wu Zhou
    • 3
  • Jonathan K. Bartley
    • 1
  • Stuart H. Taylor
    • 1
  • Albert F. Carley
    • 1
  • Christopher J. Kiely
    • 3
  • Karim Khalid
    • 4
  • Graham J. Hutchings
    • 1
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK
  2. 2.The Department of Chemistry, Stephenson Institute for Renewable EnergyUniversity of LiverpoolLiverpoolUK
  3. 3.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA
  4. 4.SABIC Technology & InnovationRiyadhSaudi Arabia

Personalised recommendations