Advertisement

Catalysis Letters

, Volume 142, Issue 8, pp 1003–1010 | Cite as

Deoxygenation of Sulfoxides to Sulfides in the Presence of Zinc Catalysts and Boranes as Reducing Reagents

  • Stephan EnthalerEmail author
  • Sebastian Krackl
  • Elisabeth Irran
  • Shigeyoshi Inoue
Article

Abstract

In the present study, the zinc-catalyzed deoxygenation of aliphatic and aromatic sulfoxides in the presence of boranes as reducing reagent has been explored. After investigation of different reaction parameters the abilities of catalytic amounts of Zn(OTf)2 has been demonstrated in the deoxygenation of various sulfoxides. Moreover, various experiments have been performed to shed light on the underlying reaction mechanism.

Graphical Abstract

Keywords

Catalysis Zinc Deoxygenation Sulfoxide Sulfide 

Notes

Acknowledgments

Financial support from the Cluster of Excellence “Unifying Concepts in Catalysis” (funded by the Deutsche Forschungsgemeinschaft and administered by the Technische Universität Berlin) is gratefully acknowledged.

References

  1. 1.
    Beller M, Bolm C (eds) (2004) Transition metals for organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) (2005) Multiphase homogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Enthaler S, Junge K, Beller M (2008) Angew Chem 120:3363–3367CrossRefGoogle Scholar
  4. 4.
    Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317–3321CrossRefGoogle Scholar
  5. 5.
    Mimoun H, De Saint Laumer JY, Giannini L, Scopelliti R, Floriani C (1999) J Am Chem Soc 121:6158–6166CrossRefGoogle Scholar
  6. 6.
    Mimoun H (1999) J Org Chem 64:2582–2589CrossRefGoogle Scholar
  7. 7.
    Bette V, Mortreux A, Lehmann CW, Carpentier J-F (2003) Chem Commun 332–333Google Scholar
  8. 8.
    Bette V, Mortreux A, Ferioli F, Martelli G, Savoia D, Carpentier J-F (2001) Eur J Org Chem 3040–3045Google Scholar
  9. 9.
    Bette V, Mortreux A, Savoia D, Carpentier J-F (2004) Tetrahedron 60:2837–2842CrossRefGoogle Scholar
  10. 10.
    Mastranzo VM, Quinterno L, Anaya de Parrodi C, Juaristi E, Walsh PJ (2004) Tetrahedron 60:1781–1789CrossRefGoogle Scholar
  11. 11.
    Ushio H, Mikami K (2005) Tetrahedron Lett 46:2903–2906CrossRefGoogle Scholar
  12. 12.
    Bette V, Mortreux A, Savoia D, Carpentier J-F (2005) Adv Synth Catal 347:289–302CrossRefGoogle Scholar
  13. 13.
    Gérard S, Pressel Y, Riant O (2005) Tetrahedron: Asymmetry 16:1889–1891CrossRefGoogle Scholar
  14. 14.
    Park B-M, Mun S, Yun J (2006) Adv Synth Catal 348:1029–1032CrossRefGoogle Scholar
  15. 15.
    Bandini M, Melucci M, Piccinelli F, Sinisi R, Tommasi S, Umani-Ronchi, A (2007) Chem Commun 4519–4521Google Scholar
  16. 16.
    Inagaki T, Yamada Y, Phong LT, Furuta A, Ito J-i, Nishiyama H (2009) Synlett 253–256Google Scholar
  17. 17.
    Gajewy J, Kwit M, Gawroński J (2009) Adv Synth Catal 351:1055–1063CrossRefGoogle Scholar
  18. 18.
    Das S, Addis D, Zhou S, Junge K, Beller M (2010) J Am Chem Soc 132:1770–1771CrossRefGoogle Scholar
  19. 19.
    Bandini M, Cozzi PG, de Angelis M, Umani-Ronchi A (2000) Tetrahedron Lett 41:1601–1605CrossRefGoogle Scholar
  20. 20.
    Locatelli M, Cozzi PG (2003) Angew Chem Int Ed 42:4928–4930CrossRefGoogle Scholar
  21. 21.
    Marinos NA, Enthaler S, Driess M (2010) ChemCatChem 2:846–853CrossRefGoogle Scholar
  22. 22.
    Enthaler S, Eckhardt B, Inoue S, Irran E, Driess M (2010) Chem Asian J 5:2027–2035CrossRefGoogle Scholar
  23. 23.
    Enthaler S, Schröder K, Inoue S, Eckhardt B, Junge K, Beller M, Driess M (2010) Eur J Org Chem 4893–4901Google Scholar
  24. 24.
    Enthaler S (2011) Catal Lett 141:55–61CrossRefGoogle Scholar
  25. 25.
    Someya CI, Inoue S, Irran E, Krackl S, Enthaler S (2011) Eur J Inorg Chem 2691–2697Google Scholar
  26. 26.
    Enthaler S, Weidauer M, Schröder F (2012) Tetrahedron Lett 53:882–885CrossRefGoogle Scholar
  27. 27.
    Enthaler S, Weidauer M (2012) Catal Lett 142:168–175CrossRefGoogle Scholar
  28. 28.
    Enthaler S, Inoue S (2012) Chem Asian J 7:169–175CrossRefGoogle Scholar
  29. 29.
    Enthaler S, Weidauer M (2012) Chem Eur J 18:1910–1913CrossRefGoogle Scholar
  30. 30.
    Someya CI, Inoue S, Krackl S, Irran E, Enthaler S (2012) Eur J Inorg Chem 1269–1277Google Scholar
  31. 31.
    Haberberger M, Someya CI, Company A, Irran E, Enthaler S (2012) Catal Lett 142:557–565CrossRefGoogle Scholar
  32. 32.
    Hille R, Reètey J, Bartlewski-Hof U, Reichenbecher W, Schink B (1999) FEMS Microbiol Rev 22:489–501CrossRefGoogle Scholar
  33. 33.
    Hille R (1996) Chem Rev 96:2757–2816CrossRefGoogle Scholar
  34. 34.
    Kisker C, Schindelin H, Rees DC (1997) Annu Rev Biochem 66:233–267CrossRefGoogle Scholar
  35. 35.
    Enemark JH, Cooney JJA, Wang J-J, Holm RH (2004) Chem Rev 104:1175–1200CrossRefGoogle Scholar
  36. 36.
    McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK (2007) Chem Rev 107:5841–5883CrossRefGoogle Scholar
  37. 37.
    Rickard D, Luther GW III (2007) Chem Rev 107:514–562CrossRefGoogle Scholar
  38. 38.
    Nicolas E, Vilaseca M, Giralt E (1995) Tetrahedron 51:5701–5710CrossRefGoogle Scholar
  39. 39.
    Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000) Angew Chem 112:2629–2633CrossRefGoogle Scholar
  40. 40.
    Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000) Angew Chem Int Ed 39:2529–2533CrossRefGoogle Scholar
  41. 41.
    Zhu Z, Espenson JH (1995) J Mol Catal A Chem 103:87–94CrossRefGoogle Scholar
  42. 42.
    Reis PM, Costa PJ, Romão CC, Fernandes JA, Calhorda MJ, Royo B (2008) Dalton Trans 1727–1733Google Scholar
  43. 43.
    Bahrami K, Khodaei MM, Karimi A (2008) Synthesis 2008, 2543–2546Google Scholar
  44. 44.
    Khurana JM, Sharma VS, Chacko A (2007) Tetrahedron 63:966–969CrossRefGoogle Scholar
  45. 45.
    Yoo BW, Park MC, Song MS (2007) Synth Commun 37:4079–4083CrossRefGoogle Scholar
  46. 46.
    Yoo BW, Song MS, Park MC (2007) Bull Korean Chem Soc 28:171–172CrossRefGoogle Scholar
  47. 47.
    Yoo BW, Song MS, Park MC (2007) Synth Commun 37:3089–3093CrossRefGoogle Scholar
  48. 48.
    Pandey LK, Pathak U, Rao AN (2007) Synth Commun 37:4105–4109CrossRefGoogle Scholar
  49. 49.
    Bahrami K, Khodaei MM, Khedri M (2007) Chem Lett 1324–1325Google Scholar
  50. 50.
    Fernandes AC, Romão CC (2006) Tetrahedron 62:9650–9654CrossRefGoogle Scholar
  51. 51.
    Roy CD, Brown HC (2006) J Chem Res 10:642–644CrossRefGoogle Scholar
  52. 52.
    Raju BR, Devi G, Nongpluh YS, Saikia AK (2005) Synlett 358–360Google Scholar
  53. 53.
    Espenson JH (2005) Coord Chem Rev 249:329–341CrossRefGoogle Scholar
  54. 54.
    Sanz R, Escribano J, Fernández Y, Aguado R, Pedrosa MR, Arnáiz FJ (2004) Synthesis 1629–1632Google Scholar
  55. 55.
    Harrison DJ, Tam NC, Vogels CM, Langler RF, Baker RT, Decken A, Westcott SA (2004) Tetrahedron Lett 45:8493–8496CrossRefGoogle Scholar
  56. 56.
    Kukuskin VY (1995) Coord Chem Rev 139:375–407CrossRefGoogle Scholar
  57. 57.
    Yoo BW, Choi KH, Kim DY, Choi KI, Kim JH (2003) Synth Commun 33:53–57CrossRefGoogle Scholar
  58. 58.
    Arias J, Newlands CR, Abu-Omar MM (2001) Inorg Chem 40:2185–2192CrossRefGoogle Scholar
  59. 59.
    Abu-Omar MM, Khan SI (1998) Inorg Chem 37:4979–4985CrossRefGoogle Scholar
  60. 60.
    Arterburn JB, Perry MC (1996) Tetrahedron Lett 37:7941–7944CrossRefGoogle Scholar
  61. 61.
    Abu-Omar MM, Appelman EH, Espenson JH (1996) Inorg Chem 35:7751–7757CrossRefGoogle Scholar
  62. 62.
    Kukuskin VY (1990) Russ Chem Rev 59:844–852CrossRefGoogle Scholar
  63. 63.
    Madesclaire M (1988) Tetrahedron 44:6537–6551CrossRefGoogle Scholar
  64. 64.
    Bryan JC, Stenkamp RE, Tulip TH, Mayer JM (1987) Inorg Chem 26:2283–2288CrossRefGoogle Scholar
  65. 65.
    Cha JS, Kim JE, Kim JD (1985) Tetrahedron Lett 26:6453–6456CrossRefGoogle Scholar
  66. 66.
    Brown HC, Ravindran N (1973) Synthesis 42–43Google Scholar
  67. 67.
    Guidon Y, Atkinson JG, Morton HE (1984) J Org Chem 49:4538–4540CrossRefGoogle Scholar
  68. 68.
    Sousa SCA, Fernandes AC (2009) Tetrahedron Lett 50:6872–6876CrossRefGoogle Scholar
  69. 69.
    Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2011) Chem Eur J 17:1768–1772CrossRefGoogle Scholar
  70. 70.
    Cardoso JMS, Royo B (2012) Chem Commun 48:4944–4946CrossRefGoogle Scholar
  71. 71.
    Enthaler S (2011) ChemCatChem 3:666–670CrossRefGoogle Scholar
  72. 72.
    Enthaler S (2011) Catal Sci Technol 1:104–110CrossRefGoogle Scholar
  73. 73.
    Enthaler S, Weidauer M (2011) Catal Lett 141:833–838CrossRefGoogle Scholar
  74. 74.
    Krackl S, Company A, Enthaler S, Driess M (2011) ChemCatChem 3:1186–1192CrossRefGoogle Scholar
  75. 75.
    Zaidlewicz M, Pakulski MM (2011) In: De Vries JG, Molander GA, Evans AP (eds) Science of synthesis, stereoselective synthesis, vol 2. Thieme, Stuttgart, pp 59–131Google Scholar
  76. 76.
    Fernandes C, Romão CC (2007) Tetrahedron Lett 48:9176–9179CrossRefGoogle Scholar
  77. 77.
    Cabrita I, Sousa SSA, Fernandes AC (2010) Tetrahedron Lett 51:6132–6135CrossRefGoogle Scholar
  78. 78.
    Fernandes C, Fernandes JA, Romão CC, Veiros LF, Calhorda MJ (2010) Organometallics 29:5517–5525CrossRefGoogle Scholar
  79. 79.
    Fernandes C, Fernandes JA, Paz FAA, Romão CC (2008) Dalton Trans 6686–6688Google Scholar
  80. 80.
    Koshino N, Espenson JH (2003) Inorg Chem 42:5735–5742CrossRefGoogle Scholar
  81. 81.
    Persson I (1982) Acta Chem Scand A 36:7–13CrossRefGoogle Scholar
  82. 82.
    Fuller L, Aitken RA, Ryan BM, Slawin AMZ, Woollins JD (2009) J Chem Crystallogr 39:407–415CrossRefGoogle Scholar
  83. 83.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc., Wallingford CTGoogle Scholar
  84. 84.
    Becke D (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  85. 85.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  86. 86.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  87. 87.
    Currier WF, Weber JH (1967) Inorg Chem 6:1539–1543CrossRefGoogle Scholar
  88. 88.
    Hawkeswood S, Stephan DW (2005) Dalton Trans 2182–2187Google Scholar
  89. 89.
    Drabowicz J, Mikolajczyk M (1976) Synthesis 527–528Google Scholar
  90. 90.
    Sheldrick GM (1997) SHELXL93 Program for the refinement of crystal structures. University of Göttingen, GöttingenGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stephan Enthaler
    • 1
    Email author
  • Sebastian Krackl
    • 1
  • Elisabeth Irran
    • 1
  • Shigeyoshi Inoue
    • 1
  1. 1.Department of Chemistry, Cluster of Excellence “Unifying Concepts in Catalysis”Technische Universität BerlinBerlinGermany

Personalised recommendations