Catalysis Letters

, Volume 142, Issue 6, pp 657–663 | Cite as

Low Temperature CO Oxidation on Ruthenium Oxide Thin Films at Near-Atmospheric Pressures

  • Y. Martynova
  • B. Yang
  • X. Yu
  • J. A. Boscoboinik
  • S. ShaikhutdinovEmail author
  • H.-J. Freund


Ruthenium model catalysts in the form of thin ruthenium oxide films grown on Ru(0001) were studied in the CO oxidation reaction at near-atmospheric pressures. The surfaces were prepared under vacuum conditions prior to the reactivity measurements carried out in a circulating flow reactor using gas chromatography. The films possessing oxygen in amounts equivalent to 1–4 monolayers (MLE) on Ru(0001) as determined by electron spectroscopy, exposed both the oxidic (RuO2(110)-like) and O/Ru(0001) surfaces. In addition, one-dimensional oxide structures were observed by scanning tunneling microscopy, which are tentatively assigned to the intermediate state for a crystalline ruthenium oxide thin film that covered the entire surface at higher oxygen coverages. At low temperatures studied (400–470 K), the reaction sets in only in the presence of oxidic structures, i.e. when the oxygen coverage, on average, exceeds 1 MLE. The reaction rate slightly increases with increasing the nominal film thickness up to 7 MLE, reflecting primarily the lateral growth of oxide phases. The disordered oxide films showed even higher reactivity. The results suggest that surface ordering and oxide film thickness are not critical for the superior catalytic activity of ruthenium oxides in this reaction.

Graphical Abstract


CO oxidation Thin oxide films Ruthenium oxide 


  1. 1.
    Freund HJ, Pacchioni G (2008) Chem Soc Rev 37:2224CrossRefGoogle Scholar
  2. 2.
    Netzer F, Allegretti F, Surnev S (2010) J Vac Sci Technol B 28:1CrossRefGoogle Scholar
  3. 3.
    Giordano L, Pacchioni G (2011) Acc Chem Res 44:1244CrossRefGoogle Scholar
  4. 4.
    Sun YN, Qin ZH, Lewandowski M, Carrasco E, Sterrer M, Shaikhutdinov S, Freund HJ (2009) J Catal 266:359CrossRefGoogle Scholar
  5. 5.
    Sun YN, Giordano L, Goniakowski J, Lewandowski M, Qin ZH, Noguera C, Shaikhutdinov S, Pacchioni G, Freund HJ (2010) Angew Chem Int Ed 49:4418CrossRefGoogle Scholar
  6. 6.
    Lei Y, Lewandowski M, Sun YN, Fujimori Y, Martynova Y, Groot IMN, Meyer R, Giordano L, Pacchioni G, Goniakowski J, Noguera C, Shaikhutdinov S, Freund HJ (2011) ChemCatChem 3:671CrossRefGoogle Scholar
  7. 7.
    Lewandowski M, Groot IMN, Shaikhutdinov S, Freund HJ (2012) Catal Today 181:52CrossRefGoogle Scholar
  8. 8.
    Hellman A, Klacar S, Grönbeck H (2009) J Am Chem Soc 131:16636CrossRefGoogle Scholar
  9. 9.
    Peden CHF, Goodman DW (1986) J Phys Chem 90:1360CrossRefGoogle Scholar
  10. 10.
    Peden CHF, Goodman DW (1991) Surf Sci 253:44CrossRefGoogle Scholar
  11. 11.
    Goodman DW, Peden CHF, Chen MS (2007) Surf Sci 601:L124CrossRefGoogle Scholar
  12. 12.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Science 287:1474CrossRefGoogle Scholar
  13. 13.
    Kim YD, Over H, Krabbes G, Ertl G (2001) Top Catal 14:95CrossRefGoogle Scholar
  14. 14.
    Narkhede V, Aßmann J, Muhler M (2005) Z Phys Chem 219:979CrossRefGoogle Scholar
  15. 15.
    Blume R, Hävecker M, Zafeiratos S, Teschner D, Kleimenov E, Knop-Gericke A, Schlögl R, Barinov A, Dudin P, Kiskinova M (2006) J Catal 239:354CrossRefGoogle Scholar
  16. 16.
    Rosenthal D, Girgsdies F, Timpe O, Blume R, Weinberg G, Teschner D, Schögl R (2009) Z Phys Chem 223:183CrossRefGoogle Scholar
  17. 17.
    Hendriksen BLM, Frenken JWM (2002) Phys Rev Lett 89:046101-1CrossRefGoogle Scholar
  18. 18.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Surf Sci 552:229CrossRefGoogle Scholar
  19. 19.
    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Phys Rev Lett 88:246103-1Google Scholar
  20. 20.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quirós C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Phys Rev Lett 95:255505-1CrossRefGoogle Scholar
  21. 21.
    Gustafson J, Mikkelsen A, Borg M, Lundgren E, Köhler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quirós C, Andersen JN (2004) Phys Rev Lett 92:126102-1CrossRefGoogle Scholar
  22. 22.
    Gustafson J, Westerström R, Mikkelsen A, Torreles X, Balmes O, Bovet N, Andersen JN, Baddeley CJ, Lundgren E (2008) Phys Rev B 78:045423-1CrossRefGoogle Scholar
  23. 23.
    Gao F, Wang Y, Cai Y, Goodman DW (2009) Surf Sci 603:1126CrossRefGoogle Scholar
  24. 24.
    Madey TE, Engelhardt H, Menzel D (1975) Surf Sci 48:304CrossRefGoogle Scholar
  25. 25.
    Kostov KL, Gsell M, Jakob P, Moritz T, Widdra W, Menzel D (1997) Surf Sci Lett 394:L138CrossRefGoogle Scholar
  26. 26.
    Kim YD, Seitsonen AP, Over H (2000) Surf Sci 465:1CrossRefGoogle Scholar
  27. 27.
    Rössler M, Günther S, Wintterlin J (2007) J Phys Chem C 111:2242CrossRefGoogle Scholar
  28. 28.
    Kim YD, Seitsonen AP, Wendt S, Wang J, Fan C, Jacobi K, Over H, Ertl G (2001) J Phys Chem B 105:3752CrossRefGoogle Scholar
  29. 29.
    Over H, Balmes O, Lundgren E (2009) Catal Today 145:236CrossRefGoogle Scholar
  30. 30.
    Aßmann J, Crihan D, Knapp M, Lundgren E et al (2005) Angew Chem Int Ed 44:917CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Y. Martynova
    • 1
  • B. Yang
    • 1
  • X. Yu
    • 1
  • J. A. Boscoboinik
    • 1
  • S. Shaikhutdinov
    • 1
    Email author
  • H.-J. Freund
    • 1
  1. 1.Abteilung Chemische Physik, Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations