Catalysis Letters

, Volume 142, Issue 6, pp 698–713 | Cite as

Fischer–Tropsch Synthesis: Preconditioning Effects Upon Co-Containing Promoted and Unpromoted Catalysts

  • Donald C. Cronauer
  • Jeffrey W. Elam
  • A. Jeremy Kropf
  • Christopher L. Marshall
  • Pei Gao
  • Shelley Hopps
  • Gary Jacobs
  • Burtron H. Davis


In the preparation and evaluation of Fischer–Tropsch (FT) catalysts, active catalysts formed by both incipient wetness impregnation (IWI) and atomic layer deposition (ALD) of major components were demonstrated. ALD-deposited Co on a silica support was more effective than a similar catalyst deposited upon a support of ALD-deposited Al2O3 on silica. The addition of Co reduction promoters including Pt, Ir and Ru using either ALD or IWI has been shown to strongly affect the catalyst pre-conditioning step. CO conversion results were consistent with previously reported Temperature Programmed Reduction X-ray Absorption Near-edge Structure/Extended X-ray Absorption Fine Structure Spectroscopy (TPR-XANES/EXAFS) experiments observing the nature of chemical transformations occurring during the activation of cobalt-based FT catalysts in hydrogen. Specifically, there exists a 2-step reduction process involving Co3O4 to CoO and CoO to Co0 transformations. The extent of catalyst preconditioning was strongly affected by the reduction temperature (with 400 °C preferred) and the loading of the promoter. This was demonstrated using a continuous-flow catalytic-bed unit with a 2:1 molar blend of H2:CO, at temperatures ranging from about 260 to 300 °C, pressures averaging 1.3 MPa (190 psia), and gas space velocities about 24 NL/h-g.

Graphical Abstract


Fischer–Tropsch Catalyst pretreatment Promoters Cobalt Alumina Incipient wetness impregnation Atomic layer deposition TPR EXAFS XANES 


  1. 1.
    Schulz H, Claeys M (1999) Appl Catal A Gen 186:1CrossRefGoogle Scholar
  2. 2.
    Steynberg A, Dry M (eds) (2004) Stud Surf Sci Catal 152Google Scholar
  3. 3.
    van der Laan GP, Beenackers AACM (1999) Catal Rev Sci Eng 41:255CrossRefGoogle Scholar
  4. 4.
    Satterfield CN (1996) Heterogeneous catalysis in industrial practice, 2nd edn. Krieger Publ. Co., MalabarGoogle Scholar
  5. 5.
    Davis BH, Technology Development for Iron Fischer–Tropsch Catalysts, Final Technical Report, Dec. 18, 1990–Dec. 17, 1993, DE96005561, DOE/PC/90056–T17, 12/31/96Google Scholar
  6. 6.
    Iglesia E (1997) Appl Catal A Gen 161:59CrossRefGoogle Scholar
  7. 7.
    van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575CrossRefGoogle Scholar
  8. 8.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD et al (2006) J Am Chem Soc 128:3956CrossRefGoogle Scholar
  9. 9.
    Borg Ø, Dietzel PDC, Spjelkavik A, Tvetenc EZ, Walmsleyd JC, Diplasb S (2008) J Catal 259:164Google Scholar
  10. 10.
    Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A Gen 333:177CrossRefGoogle Scholar
  11. 11.
    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A Gen 233:263CrossRefGoogle Scholar
  12. 12.
    Guczi L, Bazin D, Kovacs I, Borko L, Schay Z, Lynch J, Parent P, Lafon C, Stefler G, Koppany Z, Sajo I (2002) Top Catal 20:129CrossRefGoogle Scholar
  13. 13.
    Kogelbauer A, Goodwin JG Jr, Oukaci R (1996) J Catal 160:125CrossRefGoogle Scholar
  14. 14.
    Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) J Catal 156:85CrossRefGoogle Scholar
  15. 15.
    Hilman AM, Schanke D, Holmen A (1996) Catal Lett 38:143CrossRefGoogle Scholar
  16. 16.
    Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A Gen 186:169CrossRefGoogle Scholar
  17. 17.
    Jacobs G, Chaney JA, Patterson PM, Das TK, Maillot JC, Davis BH (2004) J Synchrotron Radiat 11:414CrossRefGoogle Scholar
  18. 18.
    Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Appl Catal A Gen 264:203CrossRefGoogle Scholar
  19. 19.
    Ma W, Jacobs G, Ji Y, Bhatelia T, Bukur DB, Khalid S, Davis BH (2011) Top Catal 54:757CrossRefGoogle Scholar
  20. 20.
    Bazin D, Borko L, Koppany Zs, Kovacs I, Stefler G, Sajo L, Schay Z, Guczi L (2002) Catal Lett 84:169Google Scholar
  21. 21.
    George SM (2010) Chem Rev 110:111CrossRefGoogle Scholar
  22. 22.
    Feng YH, Elam JW, Libera JA, Pellin MJ, Stair PC (2010) J Catal 269:421CrossRefGoogle Scholar
  23. 23.
    Elam JW, Groner MD, George SM (2002) Rev Sci Inst 73:2981Google Scholar
  24. 24.
    Christensen ST, Elam JW (2010) Chem Mater 22:2517CrossRefGoogle Scholar
  25. 25.
    Ott AW, Klaus JW, Johnson JM, George SM (1997) Thin Solid Films 292:135CrossRefGoogle Scholar
  26. 26.
    Nilsen O, Lie M, Foss S, Fjellvag H, Kjekshus A (2004) Appl Surf Sci 227:40CrossRefGoogle Scholar
  27. 27.
    Aaltonen T, Alen P, Ritala M, Leskela M (2003) Chem Vapor Deposition 9:45CrossRefGoogle Scholar
  28. 28.
    Jacoby M (2001) Chem Eng News 79:33Google Scholar
  29. 29.
    Ressler T (1998) J Synchrotron Radiat 5:118CrossRefGoogle Scholar
  30. 30.
    Ravel B (2001) J Synchrotron Radiat 8:314CrossRefGoogle Scholar
  31. 31.
    Rehr JJ, Zabinsky SI, Albers RC (1992) Phys Rev Lett 69:3397CrossRefGoogle Scholar
  32. 32.
    Newville M, Ravel B, Haskel D, Stern EA, Yacoby Y (2005) Phys B 208/209:154Google Scholar
  33. 33.
    Soled SL, Iglesia E, Fiato RA, Baumgartner JE, Vroman H, Miseo S (2003) Top Catal 26:101CrossRefGoogle Scholar
  34. 34.
    Li J, Jacobs G, Das TK, Zhang YQ, Davis BH (2002) Appl Catal 236:67CrossRefGoogle Scholar
  35. 35.
    Sietsma JRA, Meeldijk JD, den Breejen JP, Versluijs-Helder M, van Dillen AJ, de Jongh PE, de Jong KP (2007) Angew Chem Int Ed 46:4547CrossRefGoogle Scholar
  36. 36.
    Jacobs G, Ma W, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) Catal Lett 140:106CrossRefGoogle Scholar
  37. 37.
    Cronauer DC, Jacobs G, Linganiso L, Kropf AJ, Elam JW, Christensen ST, Marshall CL, Davis BH (2011) Catal Lett 141:968CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Donald C. Cronauer
    • 1
  • Jeffrey W. Elam
    • 1
  • A. Jeremy Kropf
    • 1
  • Christopher L. Marshall
    • 1
  • Pei Gao
    • 2
  • Shelley Hopps
    • 2
  • Gary Jacobs
    • 2
  • Burtron H. Davis
    • 2
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Center for Applied Energy ResearchLexingtonUSA

Personalised recommendations