Catalysis Letters

, Volume 142, Issue 6, pp 736–743 | Cite as

From Gas to Liquid Phase Sulfidation: An IR Spectroscopy Study

  • Erwan Le Guludec
  • Laetitia Oliviero
  • Jean Pierre Gilson
  • Françoise Maugé
  • Michaël Rebeilleau
  • Valentina De Grandi
  • Sander van Donk


A side by side characterization of gas and liquid phase activation of a CoMo/Al2O3 hydrodesulfurization (HDS) catalyst is reported using thiophene HDS as a test reaction and CO adsorption monitored by infrared spectroscopy. The liquid phase sulfidation (high pressure, dimethyldisulfide) leads to the formation of CoMoS sites with higher intrinsic activity compared to the gas phase (H2S/H2).

Graphical Abstract

As compared to the classical gas phase (H2S/H2), the liquid phase sulfidation (high pressure, feed, dimethyldisulfide) changes drastically the spectrum of CO adsorbed on the CoMo/Al2O3: the band attributed to CO in interaction with CoMoS sites is downward shifted (−17 cm−1) while its intensity is decreased


Hydrotreatment Sulfide catalyst structure Liquid phase sulfidation Effect of carbon Carbon monoxide adsorption Thiophene HDS 


  1. 1.
    Labruyere F, Dufresne P, Lacroix M, Breysse M (1998) Catal Today 43:111–116CrossRefGoogle Scholar
  2. 2.
    Glasson C, Geantet C, Lacroix M, Labruyere F, Dufresne P (2002) J Catal 212:76–85CrossRefGoogle Scholar
  3. 3.
    Berhault G, Mehta A, Pavel AC, Yang JZ, Rendon L, Yacaman MJ, Araiza LC, Moller AD, Chianelli RR (2001) J Catal 198:9–19CrossRefGoogle Scholar
  4. 4.
    H. Hallie, Oil Gas J. 80 (1982) 69Google Scholar
  5. 5.
    van Gestel J, Leglise J, Duchet JC (1994) J Catal 145:429–436CrossRefGoogle Scholar
  6. 6.
    Kooyman PJ, Buglass JG, Reinhoudt HR, van Langeveld AD, Hensen EJM, Zandbergen HW, van Veen JAR (2002) J Phys Chem B 106:11795–11799CrossRefGoogle Scholar
  7. 7.
    Dugulan AI, Hensen EJM, van Veen JAR (2008) Catal Today 130:126–134CrossRefGoogle Scholar
  8. 8.
    Dugulan AI, Craje MWJ, Kearley GJ (2004) J Catal 222:281–284CrossRefGoogle Scholar
  9. 9.
    Koizumi N, Yamazaki M, Hatanaka S, Yamada M (1997) Catal Today 39:33–44CrossRefGoogle Scholar
  10. 10.
    Oliviero L, Mariey L, Lelias MA, Aiello S, van Gestel J, Mauge F (2010) Catal Lett 135:62–67CrossRefGoogle Scholar
  11. 11.
    Texier S, Berhault G, Pérot G, Harlé V, Diehl F (2004) J Catal 223:404–418CrossRefGoogle Scholar
  12. 12.
    Qian WH, Yamada S, Ishihara A, Ichinoseki M, Kabe T (2001) Sekiyu Gakkaishi 44:225–231CrossRefGoogle Scholar
  13. 13.
    Silvy RP, Grange P, Delannay F, Delmon B (1989) Applied Catalysis 46:113–129CrossRefGoogle Scholar
  14. 14.
    Welch JG, Poyner P, Skelly RF (1994) Oil Gas J 92:56Google Scholar
  15. 15.
    Chianelli RR, Berhault G (1999) Catal Today 53:357–366CrossRefGoogle Scholar
  16. 16.
    Vissers JPR, Debeer VHJ, Prins R (1987) J Chem Soc-Faraday Trans I(83):2145–2155CrossRefGoogle Scholar
  17. 17.
    Vissers JPR, Scheffer B, Debeer VHJ, Moulijn JA, Prins R (1987) J Catal 105:277–284CrossRefGoogle Scholar
  18. 18.
    Vissers JPR, Mercx FPM, Bouwens S, Debeer VHJ, Prins R (1988) J Catal 114:291–302CrossRefGoogle Scholar
  19. 19.
    Shuxian Z, Hall WK, Ertl G, Knozinger H (1986) J Catal 100:167–175CrossRefGoogle Scholar
  20. 20.
    Peri JB (1982) J Phys Chem 86:1615–1622CrossRefGoogle Scholar
  21. 21.
    Bachelier J, Tilliette MJ, Cornac M, Duchet JC, Lavalley JC, Cornet D (1984) Bull Soc Chim Belg 93:743CrossRefGoogle Scholar
  22. 22.
    Mauge F, Lavalley JC (1992) J Catal 137:69–76CrossRefGoogle Scholar
  23. 23.
    Mauge F, Vallet A, Bachelier J, Duchet JC, Lavalley JC (1996) J Catal 162:88–95CrossRefGoogle Scholar
  24. 24.
    Delgado E, Fuentes GA, Hermann C, Kunzmann G, Knozinger H (1984) Bull Soc Chim Belg 93:735–742CrossRefGoogle Scholar
  25. 25.
    Vogelaar BM, Steiner P, van Langeveld AD, Eijsbouts S, Moulijn JA (2003) Appl Catal A-Gen 251:85–92CrossRefGoogle Scholar
  26. 26.
    Lelias MA, Kooyman PJ, Mariey L, Oliviero L, Travert A, van Gestel J, van Veen JAR, Mauge F (2009) J Catal 267:14–23CrossRefGoogle Scholar
  27. 27.
    Glasson C, Geantet C, Lacroix M, Labruyère F, Dufresne P (1998) Catal Today 45:341–346CrossRefGoogle Scholar
  28. 28.
    Laperdrix E, Sahibed-dine A, Costentin G, Saur O, Bensitel M, Nédez C, Mohamed Saad AB, Lavalley JC (2000) Appl Catal B 26:71–80CrossRefGoogle Scholar
  29. 29.
    Pieplu A, Saur O, Lavalley J-C, Pijolat M, Legendre O (1996) J Catal 159:394–400CrossRefGoogle Scholar
  30. 30.
    Elst L, Eijsbouts S, van Langeveld AD, Moulijn JA (2000) J Catal 196:95–103CrossRefGoogle Scholar
  31. 31.
    Vogelaar BM, Steiner P, van der Zijden TF, van Langeveld AD, Eijsbouts S, Moulijn JA (2007) Appl Catal A-Gen 318:28–36CrossRefGoogle Scholar
  32. 32.
    Vogelaar BM, Kagami N, van der Zijden TF, van Langeveld AD, Eijsbouts S, Moulijn JA (2009) J Mol Catal A-Chem 309:79–88CrossRefGoogle Scholar
  33. 33.
    Lange JP, Gutsze A, Allgeier J, Karge HG (1988) Applied Catalysis 45:345–356CrossRefGoogle Scholar
  34. 34.
    Karge HG, Nießen W, Bludau H (1996) Appl Catal A 146:339–349CrossRefGoogle Scholar
  35. 35.
    McLellan GD, Howe RF, Parker LM, Bibby DM (1986) J Catal 99:486–491CrossRefGoogle Scholar
  36. 36.
    Cerqueira HS, Ayrault P, Datka J, Guisnet M (2000) Microporous Mesoporous Mater 38:197–205CrossRefGoogle Scholar
  37. 37.
    Palumbo L, Bonino F, Beato P, Bjorgen M, Zecchina A, Bordiga S (2008) J Phys Chem C 112:9710–9716CrossRefGoogle Scholar
  38. 38.
    Li C, Stair PC (1997) Catal Today 33:353–360CrossRefGoogle Scholar
  39. 39.
    Datka J, Sarbak Z, Eischens RP (1994) J Catal 145:544–550CrossRefGoogle Scholar
  40. 40.
    Trombetta M, Busca G, Rossini SA, Piccoli V, Cornaro U (1997) J Catal 168:334–348CrossRefGoogle Scholar
  41. 41.
    Can F, Travert A, Ruaux V, Gilson JP, Maugé F, Hu R, Wormsbecher RF (2007) J Catal 249:79–92CrossRefGoogle Scholar
  42. 42.
    Travert A, Dujardin C, Mauge F, Veilly E, Cristol S, Paul JF, Payen E (2006) J Phys Chem B 110:1261–1270CrossRefGoogle Scholar
  43. 43.
    Dujardin C, Lelias MA, van Gestel J, Travert A, Duchet JC, Mauge F (2007) Appl Catal A-Gen 322:46–57CrossRefGoogle Scholar
  44. 44.
    Hadjiivanov KI, Vayssilov GN, Advances in Catalysis, Vol 47, Academic Press Inc, San Diego, pp 307–511Google Scholar
  45. 45.
    Lelias MA, Le Guludec E, Mariey L, van Gestel J, Travert A, Oliviero L, Mauge F (2010) Catal Today 150:179–185CrossRefGoogle Scholar
  46. 46.
    Lelias MA, van Gestel J, Mauge F, van Veen JAR (2008) Catal Today 130:109–116CrossRefGoogle Scholar
  47. 47.
    Chen W (2009) PhD Thesis, University of Caen, CaenGoogle Scholar
  48. 48.
    Aegerter PA, Quigley WWC, Simpson GJ, Ziegler DD, Logan JW, McCrea KR, Glazier S, Bussell ME (1996) J Catal 164:109–121CrossRefGoogle Scholar
  49. 49.
    Wu WC, Wu ZL, Feng ZC, Ying PL, Li C (2004) Phys Chem Chem Phys 6:5596–5602CrossRefGoogle Scholar
  50. 50.
    Kelty SP, Berhault G, Chianelli RR (2007) Appl Catal A-Gen 322:9–15CrossRefGoogle Scholar
  51. 51.
    Travert A, Dujardin C, Mauge F, Cristol S, Paul JF, Payen E, Bougeard D (2001) Catal Today 70:255–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Erwan Le Guludec
    • 1
    • 2
  • Laetitia Oliviero
    • 1
  • Jean Pierre Gilson
    • 1
  • Françoise Maugé
    • 1
  • Michaël Rebeilleau
    • 2
  • Valentina De Grandi
    • 2
  • Sander van Donk
    • 2
  1. 1.Laboratoire Catalyse et Spectrochimie, ENSICAENUniversité de Caen, CNRSCaenFrance
  2. 2.Total Research Center FeluyFeluyBelgium

Personalised recommendations