Catalysis Letters

, Volume 142, Issue 5, pp 531–540 | Cite as

Hydrogenation and Ring Opening of Aromatic and Naphthenic Hydrocarbons Over Noble Metal (Ir, Pt, Rh)/Al2O3 Catalysts

  • Anne Piegsa
  • Wolfgang Korth
  • Fehime Demir
  • Andreas Jess
Article

Abstract

The hydrogenation and ring opening of model hydrocarbons and of naphtha was studied over commercial noble metal (Ir, Pt, Rh)/Al2O3 catalysts. The experiments were performed in a fixed bed reactor at temperatures between 220 and 350 °C and pressures of 1.1 and 5.0 MPa, respectively. The product distribution was determined and the cetane number was calculated. The Pt catalyst is very active for hydrogenation of aromatics but does not catalyse the ring opening of naphthenes. The Ir and Rh catalysts are active for both hydrogenation of aromatics and ring opening of naphthenes. Experiments with toluene, m-xylene, propyl-benzene, and methylcyclohexane indicate that ring opening follows a selective mechanism, where the cleavage of bisecondary carbon bonds is favoured. This results in predominant formation of branched paraffins. The product distribution as well as cracking of long-chain hydrocarbons, which increase at temperatures above 260 °C, lead to an insignificant boost in the cetane number, as confirmed by experiments using real naphtha as feedstock.

Graphical Abstract

Keywords

Hydrogenation Ring opening Naphtha Platinum Iridium Rhodium Cetane number 

References

  1. 1.
    Calemma V, Carati A, Flego C, Giardino R, Gagliardi F, Millini R, Bellussi G (2008) ChemSusChem 1:548CrossRefGoogle Scholar
  2. 2.
    Du HB, Fairbridge C, Yang H, Ring Z (2005) Appl Catal A 294:1CrossRefGoogle Scholar
  3. 3.
    McVicker GB, Daage M, Touvelle MS, Hudson CW, Klein DP, Baird WC, Cook BR, Chen JG, Hantzer S, Vaughan DE, Ellis ES, Feeley OC (2002) J Catal 210:137CrossRefGoogle Scholar
  4. 4.
    Santikunaporn M, Alvarez WE, Resasco DE (2007) Appl Catal A 325:175CrossRefGoogle Scholar
  5. 5.
    Deutsche Energie Agentur (2011) Bedarf und produktion von mineralöl im künftigen energiemix, BerlinGoogle Scholar
  6. 6.
    Steiger W, Stolte U, Scholz I, Schmerbeck S (2008) Motortech Z (MTZ) 69:184Google Scholar
  7. 7.
    van Basshuysen R, Schäfer F (2010) Handbuch Verbrennungsmotor. Vieweg & Teubner, WiesbadenGoogle Scholar
  8. 8.
    Weitkamp J (2010) In: Reschetilowski W (ed) On catalysis, vol 2. VWB-Verlag für Wissenschaft und Bildung, BerlinGoogle Scholar
  9. 9.
    Weitkamp J, Raichle A, Traa Y, Rupp M, Fuder F (2000) Chem Commun: 403Google Scholar
  10. 10.
    Weitkamp J, Traa Y, Raichle A (2001) Chem Ing Techn 73:947CrossRefGoogle Scholar
  11. 11.
    Basset JM, Dalmai-Imelik G, Primet M, Mutin R (1975) J Catal 37:22CrossRefGoogle Scholar
  12. 12.
    Stanislaus A, Cooper BH (1994) Catal Rev 36:75CrossRefGoogle Scholar
  13. 13.
    Thybaut JW, Saeys M, Marin GB (2002) Chem Eng J 90:117CrossRefGoogle Scholar
  14. 14.
    Rahaman MV, Vannice MA (1991) J Catal 127:267CrossRefGoogle Scholar
  15. 15.
    Mills GA, Heinemann H, Milliken TH, Oblad AG (1953) Ind Eng Chem 45:134CrossRefGoogle Scholar
  16. 16.
    Weisz PB, Swegler EW (1957) Science 126:31CrossRefGoogle Scholar
  17. 17.
    Galperin LB, Bricker JC, Holmgren JR (2003) Appl Catal A 239:297CrossRefGoogle Scholar
  18. 18.
    Maire G, Plouidy G, Prudhomme JC, Gault FG (1965) J Catal 4:556CrossRefGoogle Scholar
  19. 19.
    Do PT, Alvarez WE, Resasco DE (2006) J Catal 238:477CrossRefGoogle Scholar
  20. 20.
    Hagen J (1999) Industrial catalysis. Wiley, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anne Piegsa
    • 1
  • Wolfgang Korth
    • 1
  • Fehime Demir
    • 2
  • Andreas Jess
    • 1
  1. 1.Department of Chemical Engineering, Faculty of Engineering Science, University of BayreuthBayreuthGermany
  2. 2.Volkswagen AG, Corporate ResearchWolfsburgGermany

Personalised recommendations