Advertisement

Catalysis Letters

, Volume 142, Issue 4, pp 408–416 | Cite as

Study of Oxygen Reactivity in La1−x Sr x CoO3−δ Perovskites for Total Oxidation of Toluene

  • R. Pereñíguez
  • J. L. Hueso
  • F. Gaillard
  • J. P. Holgado
  • A. Caballero
Article

Abstract

The total oxidation of toluene is studied over catalytic systems based on perovskite with general formula AA′CoO3-δ (A = La, A′ = Sr). The systematic and progressive substitution of La3+ by Sr2+ cations in the series (La1−x Sr x CoO3−δ system) of the perovskites have been studied to determine their influence in the final properties of these mixed oxides and their corresponding reactivity performance for the total oxidation of toluene as a model volatile organic compound with detrimental effects for health and environment. The structure and morphology of the samples before and after reaction have been characterized by XRD, BET and FE-SEM techniques. Additional experiments of temperature programmed desorption of O2 in vacuum and reduction in H2 were also performed to identify the main surface oxygen species and the reducibility of the different perovskites. It is remarkable that the La1−x Sr x CoO3−δ series presents better catalytic performance for the oxidation of toluene, with lower values for the T50 (temperature of 50 % toluene conversion) than the previously studied LaNi1−y Co y O3 series.

Graphical abstract

The substitution of La3+ by Sr2+ (La1−x Sr x CoO3−δ) have been studied to determine the influence in the final structure of these mixed oxides and their reactivity toward the deep oxidation of toluene, where the α-types oxygen species may play an activerole.

Keywords

Perovskites Toluene Total oxidation Spray pyrolysis 

Notes

Acknowledgments

We thank the Ministry of Science and Education of Spain for financial support (Projects ENE2004-01660 and ENE2007-67926-C02-01) and a PhD fellowship for R.P.).

References

  1. 1.
    Bialobok B, Trawczynski J, Mista W, Zawadzki M (2007) Appl Catal B Environ 72:395CrossRefGoogle Scholar
  2. 2.
    Rodrigues ACC (2007) Catal Commun 8:1227CrossRefGoogle Scholar
  3. 3.
    Spinicci R, Tofanari A, Faticanti M, Pettiti I, Porta P (2001) J Mol Catal A Chem 176:247CrossRefGoogle Scholar
  4. 4.
    Spivey JJ (1987) Ind Eng Chem Res 26:2165CrossRefGoogle Scholar
  5. 5.
    Chang C, Weng HS (1993) Ind Eng Chem Res 32:2930CrossRefGoogle Scholar
  6. 6.
    Alifanti M, Florea M, Somacescu S, Parvulescu VI (2005) Appl Catal B Environ 60:33CrossRefGoogle Scholar
  7. 7.
    Irusta S, Pina MP, Menendez M, Santamaria J (1998) J Catal 179:400CrossRefGoogle Scholar
  8. 8.
    Okumura K, Kobayashi T, Tanaka H, Niwa M (2003) Appl Catal B Environ 44:325CrossRefGoogle Scholar
  9. 9.
    Kubacka A, Fuerte A, Martinez-Arias A, Fernandez-Garcia M (2007) Appl Catal B Environ 74:26CrossRefGoogle Scholar
  10. 10.
    Todorova S, Kadinov G, Tenchev K, Caballero A, Holgado JP, Pereñiguez R (2009) Catal Lett 129:149CrossRefGoogle Scholar
  11. 11.
    Todorova S, Naydenov A, Kolev H, Holgado J P, Ivanov G, Kadinov G, Caballero A (2012) Appl Catal A Gen 413–414:43CrossRefGoogle Scholar
  12. 12.
    Hueso JL, Caballero A, Ocaña M, González-Elipe AR (2008) J Catal 257:334CrossRefGoogle Scholar
  13. 13.
    Nakamura T, Misono M, Yoneda Y (1982) Bull Chem Soc Jpn 55:394CrossRefGoogle Scholar
  14. 14.
    Tejuca LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides, vol 1. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Pereñíguez R, Hueso JL, Holgado JP, Gaillard F, Caballero A (2009) Catal Lett 131:347CrossRefGoogle Scholar
  16. 16.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981CrossRefGoogle Scholar
  17. 17.
    Nakamura T, Misono M, Yoneda Y (1981) Chem Lett 10:1589CrossRefGoogle Scholar
  18. 18.
    Agarwal DD, Goswami HS (1994) React Kinet Catal Lett 53:441CrossRefGoogle Scholar
  19. 19.
    Liang JJ, Weng HS (1993) Ind Eng Chem Res 32:2563CrossRefGoogle Scholar
  20. 20.
    Deng JG, Zhang L, Dai HX, He H, Au CT (2008) Ind Eng Chem Res 47:8175CrossRefGoogle Scholar
  21. 21.
    Li N, Boreave A, Deloume JP, Gaillard F (2008) Solid State Ion 179:1396CrossRefGoogle Scholar
  22. 22.
    Rousseau S, Loridant S, Delichere P, Boreave A, Deloume JP, Vernoux P (2009) Appl Catal B Environ 88:438CrossRefGoogle Scholar
  23. 23.
    Blasin-Aube V, Belkouch J, Monceaux L (2003) Appl Catal B Environ 43:175CrossRefGoogle Scholar
  24. 24.
    Alifanti M, Florea M, Parvulescu VI (2007) Appl Catal B Environ 70:400CrossRefGoogle Scholar
  25. 25.
    López-Navarrete E, Caballero A, Orera VM, Lázaro FJ, Ocaña M (2003) Acta Mater 51:2371CrossRefGoogle Scholar
  26. 26.
    Malet P, Caballero A (1988) J Chem Soc Faraday Trans 84:2369CrossRefGoogle Scholar
  27. 27.
    Gaillard F, Joly JP, Perrard A (2007) Adsorpt Sci Technol 25:245CrossRefGoogle Scholar
  28. 28.
    Gaillard F, Joly JP, Boreave A, Vernoux P, Deloume JP (2007) Appl Surf Sci 253:5876CrossRefGoogle Scholar
  29. 29.
    Gaillard F, Joly JP, Li N, Boreave A, Deloume JP (2008) Solid State Ion 179:941CrossRefGoogle Scholar
  30. 30.
    Merino NA, Barbero BP, Grange P, Cadus LE (2005) J Catal 231:232CrossRefGoogle Scholar
  31. 31.
    Royer S, Berube F, Kaliaguine S (2005) Appl Catal A Gen 282:273CrossRefGoogle Scholar
  32. 32.
    Jimenez VM, Espinos JP, Gonzalez-Elipe AR (1998) Surf Interface Anal 26:62CrossRefGoogle Scholar
  33. 33.
    Jimenez VM, Fernandez A, Espinos JP, Gonzalezelipe AR (1995) J Electron Spectrosc Relat Phenom 71:61CrossRefGoogle Scholar
  34. 34.
    Royer S, Alamdari H, Duprez D, Kaliaguine S (2005) Appl Catal B Environ 58:273CrossRefGoogle Scholar
  35. 35.
    Hueso JL, Holgado JP, Pereñíguez R, Mun S, Salmeron M, Caballero A (2010) J Solid State Chem 183:27CrossRefGoogle Scholar
  36. 36.
    Espinós JP, Gonzalez-Elipe AR, Caballero A, García J, Munuera G (1992) J Catal 136:415CrossRefGoogle Scholar
  37. 37.
    Pereñíguez R, González-DelaCruz VM, Caballero A, Holgado JP (2010) Appl Catal B Environ 93:346CrossRefGoogle Scholar
  38. 38.
    Hueso JL, Martínez-Martínez D, Caballero A, González-Elipe AR, Mun S, Salmerón M (2009) Catal Commun 10:1898CrossRefGoogle Scholar
  39. 39.
    Giraudon JM, Elhachimi A, Wyrwalski F, Siffert S, Aboukais A, Lamonier JF, Leclercq G (2007) Appl Catal B Environ 75:157CrossRefGoogle Scholar
  40. 40.
    Sierra Gallego G, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragón F (2008) Appl Catal A Gen 334:251CrossRefGoogle Scholar
  41. 41.
    Vaz T, Salker AV (2007) Mater Sci Eng B Adv Funct Solid State Mater 143:81Google Scholar
  42. 42.
    González-DelaCruz VM, Holgado JP, Pereñíguez R, Caballero A (2008) J Catal 257:307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla) and Departamento de Química InorgánicaUniversidad de SevillaSevilleSpain
  2. 2.IRCELYON, Institut de recherches sur la catalyse et l′environnement de LyonUniversity of Lyon-CNRSVilleurbanneFrance
  3. 3.Instituto de Nanociencia de Aragón (INA) y Departamento de IngenieríaQuímica de la Universidad de ZaragozaZaragozaSpain

Personalised recommendations