Advertisement

Catalysis Letters

, Volume 141, Issue 12, pp 1732–1738 | Cite as

The Influence of Platinum Addition on Nano-Crystalline Ceria Catalysts for the Total Oxidation of Naphthalene a Model Polycyclic Aromatic Hydrocarbon

  • Edwin N. Ntainjua
  • Thomas E. Davies
  • Tomas Garcia
  • Benjamin Solsona
  • Stuart H. TaylorEmail author
Article

Abstract

The effect of adding Pt to a highly active ceria polycyclic aromatic hydrocarbon total oxidation catalyst has been investigated for the oxidation of naphthalene. The addition of Pt to ceria suppressed the performance of the catalyst for total oxidation. The addition of Pt reduced catalyst surface area, decreased the ceria crystallite size, decreased the concentration of ceria defects and increased the reducibility of the catalyst. The suppression of activity has been attributed to strong metal-support interaction between Pt and ceria, which limits the availability of lattice oxygen for the oxidation process, which follows the Mars-Van Krevelen redox mechanism in the absence of Pt. It is postulated that the presence of dispersed Pt, alters the mechanism of naphthalene oxidation over the ceria catalyst.

Graphical Abstract

The addition of platinum to a highly active naphthalene oxidation ceria catalyst modifies activity.

Keywords

PAHs VOCs Catalytic oxidation Ceria Platinum 

Notes

Acknowledgment

The authors would like to thank Cardiff University for financial support.

References

  1. 1.
    Luxemburg: Office for Official Publications of the European Communities, PAH Position Paper, 2001 ISBN92-894-2057-XGoogle Scholar
  2. 2.
    Levy JI, Houseman EA, Spengler JD, Loh P, and Ryan L (2001) Environ Health Prospect 109(4):341–7Google Scholar
  3. 3.
    Agency for Toxic Substances and Disease Registry, Public Health Statement for Polycyclic Aromatic Hydrocarbons, 1995Google Scholar
  4. 4.
    Ferrandon M, Bjornbom E (2001) J Catal 200:148CrossRefGoogle Scholar
  5. 5.
    Carno J, Berg M, Sven J (1996) Fuel 75:959CrossRefGoogle Scholar
  6. 6.
    Neyestanaki AK, Lindfors L-E, Ollonqvist T, Vayrynen J (2000) Appl Catal A 196:233CrossRefGoogle Scholar
  7. 7.
    Klingstedt F, Neyestanaki AK, Lindfors LE, Salmi T, Heikkila T, Laine E (2003) Appl Catal A 239:229CrossRefGoogle Scholar
  8. 8.
    Ndifor EN, Garcia T, Taylor SH (2006) Catal Lett 110:125CrossRefGoogle Scholar
  9. 9.
    Zhang XW, Shen SC, Yu LE, Kawi S, Hidajat K, Simon Ng KY (2003) Appl Catal A 250:341CrossRefGoogle Scholar
  10. 10.
    Shie J-L, Chang C-Y, Chen J-H, Tsai W-T, Chen Y-H, Chiou C-S, Chang C-F (2005) Appl Catal B 56:289CrossRefGoogle Scholar
  11. 11.
    Zhang X-W, Shen S-C, Hidajat K, Kawi S, Yu LE, Simon KY (2004) Catal Lett 96:87CrossRefGoogle Scholar
  12. 12.
    Musialik-Piotrowska A, Syczewska K and Mendyka B (1998) Environ Prot Eng 24Google Scholar
  13. 13.
    Neyestanaki AK, Lindfors L-E (1998) Fuel 77:1727CrossRefGoogle Scholar
  14. 14.
    Garcia T, Solsona B, Taylor SH (2005) Catal Lett 105:183CrossRefGoogle Scholar
  15. 15.
    Garcia T, Solsona B, Taylor SH (2006) Appl Catal B 66:92CrossRefGoogle Scholar
  16. 16.
    Ntainjua EN, Carley AF and Taylor SH (2008) Catal Today 137(2–4):362–366Google Scholar
  17. 17.
    Imamura S, Higashihara T, Saito Y, Aritani H, Kanai H, Matsumura Y, Tsuda N (1999) Catal Today 50:369CrossRefGoogle Scholar
  18. 18.
    Idris H (2004) Plat Met Rev 48:105CrossRefGoogle Scholar
  19. 19.
    Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196:293CrossRefGoogle Scholar
  20. 20.
    Golunski SE, Hatcher HA, Rajaram RR, Truex TJ (1995) Appl Catal B 5:367CrossRefGoogle Scholar
  21. 21.
    Yang Z, Woo TK, Hermansson K (2004) Chem Phys Lett 396:384CrossRefGoogle Scholar
  22. 22.
    Hardacre C, Rayment T, Lambert RM (1996) J Catal 158:102CrossRefGoogle Scholar
  23. 23.
    Olcese GL (1973) J Less Common Metals 33:71CrossRefGoogle Scholar
  24. 24.
    Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178CrossRefGoogle Scholar
  25. 25.
    Andreeva D, Nedyalkova R, Ilieva L, Abrashev MV (2004) Appl Catal B 52:157CrossRefGoogle Scholar
  26. 26.
    Johnson MFL, Mooi J (1987) J Catal 103:502CrossRefGoogle Scholar
  27. 27.
    Bhattacharya AK, Chesters MA, Pemble ME, Sheppard N (1988) Surf Science 206:L845CrossRefGoogle Scholar
  28. 28.
    Gdowski GE, Fair JA, Madix RJ (1983) Surf Sci 127:541CrossRefGoogle Scholar
  29. 29.
    Toyoshima I, Somorjai GA (1979) Catal Rev Sci Eng 19:105CrossRefGoogle Scholar
  30. 30.
    Ndifor EN, Garcia T, Solsona B, Taylor SH (2007) Appl Catal B 76:248CrossRefGoogle Scholar
  31. 31.
    Kim S-K, Paik U, Park J-G (2006) J Ceram Process Res 7:5357Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Edwin N. Ntainjua
    • 1
  • Thomas E. Davies
    • 1
  • Tomas Garcia
    • 2
  • Benjamin Solsona
    • 3
  • Stuart H. Taylor
    • 1
    Email author
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK
  2. 2.Instituto de Carboquímica (CSIC)ZaragozaSpain
  3. 3.Departament d’Enginyeria QuímicaUniversitat de ValènciaBurjassot, ValenciaSpain

Personalised recommendations