Advertisement

Catalysis Letters

, 141:1405 | Cite as

Liquid-Phase Isobutane/Butene-Alkylation Using Promoted Lewis-Acidic IL-Catalysts

  • Stephan Aschauer
  • Lisa Schilder
  • Wolfgang Korth
  • Susanne Fritschi
  • Andreas Jess
Article

Abstract

The effect of different promoters on activity and selectivity of Lewis-acidic chloroaluminate ionic liquid catalysts was studied for isobutane/2-butene alkylation. When tert-butyl halides are used as promoters, the active species of the alkylation reaction, which is the tert-butyl cation, is directly generated whereas upon catalysis with Brønsted-acid supported ionic liquids, this species is indirectly provided through a hydride shift between protonated 2-butene and isobutane. Experimental results both from batch and continuously operated liquid phase alkylation reactors indicate, that tert-butyl halides are able to speed up the reaction rate significantly and shift the C8-selectivity towards the desired high-octane trimethylpentanes (TMPs). However, secondary reactions like oligomerization and cracking could not be suppressed by the use of this additives and high deactivation rates in continuous opperation were observed. Suggestions are made, how the product composition is effected by the additive and how the promoted IL-catalyst system is deactivated with time on stream.

Graphical Abstract

Keywords

Alkylation Isobutane Chloroaluminate ionic liquid tert-butyl halides 

Notes

Acknowledgment

We would like to thank the German Research Foundation for supporting the project (JE257/14-1).

References

  1. 1.
    Corma A, Martinez A (1993) Catal Rev Sci Eng 35(4):483CrossRefGoogle Scholar
  2. 2.
    Weitkamp J, Traa Y (1999) Catal Today 49(1–3):193CrossRefGoogle Scholar
  3. 3.
    Feller A, Lercher JA (2004) In: Gates BC, Knözinger H (eds) Advances in catalysis, vol 48. Academic Press, Amsterdam, pp 229–295. http://dx.doi.org/10.1016/S0360-0564(04)48003-1
  4. 4.
    Smirnova MY, Toktarev AV, Ayupov AB, Echevsky GV (2010) Catal Today 152(1–4):17CrossRefGoogle Scholar
  5. 5.
    Costa BOD, Querini CA (2010) Appl Catal A Gen 385(1–2):144CrossRefGoogle Scholar
  6. 6.
    Feller A, Barth JO, Guzman A, Zuazo I, Lercher JA (2003) J Catal 220(1):192CrossRefGoogle Scholar
  7. 7.
    Sievers C, Zuazo I, Guzman A, Olindo R, Syska H, Lercher JA (2007) J Catal 246(2):315CrossRefGoogle Scholar
  8. 8.
    Klingmann R, Josl R, Traa Y, Gläser R, Weitkamp J (2005) Appl Catal A Gen 281(1–2):215CrossRefGoogle Scholar
  9. 9.
    Josl R, Klingmann R, Traa Y, Gläser R, Weitkamp J (2004) Catal Commun 5(5):239CrossRefGoogle Scholar
  10. 10.
    Chauvin Y, Hirschauer A, Olivier H (1994) J Mol Catal 92(2):155CrossRefGoogle Scholar
  11. 11.
    Huang CP, Liu ZC, Xu CM, Chen BH, Liu YF (2004) Appl Catal A Gen 277(1-2):41CrossRefGoogle Scholar
  12. 12.
    Yoo K, Namboodiri VV, Varma RS, Smirniotis PG (2004) J Catal 222(2):511CrossRefGoogle Scholar
  13. 13.
    Kumar P, Vermeiren W, Dath JP, Hoelderich WF (2006) Energy Fuels 20(2):481. http://dx.doi.org/10.1021/ef050264c Google Scholar
  14. 14.
    Liu Y, Hu R, Xu CM, Su H (2008) Appl Catal A Gen 346(1–2):189CrossRefGoogle Scholar
  15. 15.
    Zhang J, Huang CP, Chen BH, Li J, Li Y (2008) Korean J Chem Eng 25(5):982CrossRefGoogle Scholar
  16. 16.
    Bui TTL, Korth W, Aschauer SJ, Jess A (2009) Green Chem 11(12):1961CrossRefGoogle Scholar
  17. 17.
    Olah GA, Mathew T, Goeppert A, Török B, Bucsi I, Li XY, Wang Q, Marinez ER, Batamack P, Aniszfeld R, Prakash GKS (2005) J Am Chem Soc 127(16):5964CrossRefGoogle Scholar
  18. 18.
    Tang S, Scurto AM, Subramaniam B (2009) J Catal 268(2):243CrossRefGoogle Scholar
  19. 19.
    Liu ZC, Zhang R, Xu CM, Xia R (2006) Oil Gas J 40(104):52Google Scholar
  20. 20.
    Welton T (2010) Ion pairs or ion solvation: dissolving salts in ionic liquids. In: Talk at Conference: 2nd Asia Pacific Conference on Ionic Liquids and Green Processes; Bayshore Hotel, Dalian, China; 7. September 2010Google Scholar
  21. 21.
    Schmerling L (1953) Ind Eng Chem 45(7):1447CrossRefGoogle Scholar
  22. 22.
    Simpson MF (1996) The zeolite-catalyzed alkylation of isobutane with butene. Ph.D. thesis, Princeton University, PrincetonGoogle Scholar
  23. 23.
    Langley RJ, Pike RW (1972) AIChE J 18(4):698CrossRefGoogle Scholar
  24. 24.
    Lacheen H, Timken HkC (2009) Production of low sulphur alkylate gasoline fuel. Patent (WO/2009/058517); Chevron U.S.A. IncGoogle Scholar
  25. 25.
    Elomari S (2009) Alkylation process using an alkyl halide promoted ionic liquid catalyst. Patent (US 7495144 B2); Chevron U.S.A. IncGoogle Scholar
  26. 26.
    Rosenbach NJ, Mota CJA (2005) J Braz Chem Soc 16(4):691CrossRefGoogle Scholar
  27. 27.
    Eichmann M (1999) Zweiphasige Dimerisierung von Propen und 1-Buten mit ionischen Flüssigkeiten. Ph.D. thesis, RWTH Aachen, AachenGoogle Scholar
  28. 28.
    Weitkamp J, Traa Y (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim, pp 2039–2069Google Scholar
  29. 29.
    Weitkamp J (1980) In: Imelik B, Naccache C, Ben Taarit Y, Vedrine JC, Coudurier G, Praliaud H (eds) Studies in surface science and catalysis: catalysis by zeolites. Elsevier, Amsterdam, pp 65–75Google Scholar
  30. 30.
    Nenitzescu CD, Cantuniari IP (1933) Berichte der deutschen chemischen Gesellschaft (A and B Series) 66(8):1097CrossRefGoogle Scholar
  31. 31.
    Bai H, Ault BS (1991) J Phys Chem 95(8):3080CrossRefGoogle Scholar
  32. 32.
    Simpson MF, Wei J, Sundaresan S (1996) Ind Eng Chem Res 35(11):3861CrossRefGoogle Scholar
  33. 33.
    Langley RJ (1969) The kinetics of alkylation of isobutane with propylene using a sulfuric acid catalyst. Ph.D. thesis, Louisiana State University and Agricultural & Mechanical College, Baton RougeGoogle Scholar
  34. 34.
    Lee LM (1973) Alkylation of isobutane with butene-1 in sulfuric acid: a kinetic study. Ph.D. thesis, Cornell University, IthacaGoogle Scholar
  35. 35.
    Feller A (2003) Reaction mechanism and deactivation pathways in zeolite. Ph.D. thesis, Technischen Universität München, MünchenGoogle Scholar
  36. 36.
    Zuazo I (2004) Deactivation routes in zeolite catalyzed isobutane/2-butene alkylation and regeneration procedures. Ph.D. thesis, Technischen Universität München, MünchenGoogle Scholar
  37. 37.
    Kohlheim KE (1985) Zur Wirkungsweise amphiler Verbindungen als Phasen-Transfer-bzw. Micellarkatalysatoren bei der Isoalkan/Olefin-Alkylierung in wasserfreiem Fluorwasserstoff. Ph.D. thesis, Universität Greifswald, GreifswaldGoogle Scholar
  38. 38.
    Albright LF, Spalding MA, Kopser CG, Eckert RE (1988) Ind Eng Chem Res 27(3):386CrossRefGoogle Scholar
  39. 39.
    Mortikov ES, Zen’kovskii SM, Mostovoi NV, Kononov NF, Golomshtok LI, Minachev KM (1974) Russ Chem Bull 23(7):1469CrossRefGoogle Scholar
  40. 40.
    Scheuch E (1991) Micellaktivierte Alkylierungen von Butenen bzw. Buten/Propen-Gemischen mit Isobutan in wasserfreiem Fluorwasserstoff. Ph.D. thesis, Universität Greifswald, GreifswaldGoogle Scholar
  41. 41.
    Sievers C, Liebert JS, Stratmann MM, Olindo R, Lercher JA (2008) Appl Catal A Gen 336(1–2):89CrossRefGoogle Scholar
  42. 42.
    Sikorska C, Freza S, Skurski P (2010) J Phys Chem A 114(5):2235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stephan Aschauer
    • 1
  • Lisa Schilder
    • 1
  • Wolfgang Korth
    • 1
  • Susanne Fritschi
    • 1
  • Andreas Jess
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations