Advertisement

Catalysis Letters

, 141:1254 | Cite as

The Effect of Alkoxide Ionic Liquids on the Synthesis of Dimethyl Carbonate from CO2 and Methanol over ZrO2–MgO

  • Valerie Eta
  • Päivi Mäki-Arvela
  • Eero Salminen
  • Tapio Salmi
  • Dmitry Yu. Murzin
  • Jyri-Pekka Mikkola
Article

Abstract

The use of carbon dioxide in the synthesis of chemicals, such as dimethyl carbonate (DMC), constitutes an environmentally attractive alternative to hazardous and toxic reagents. However, the direct synthesis of DMC from methanol and CO2 is characterized by low yields due to the reaction equilibrium and the thermodynamic limitations \( \left( {\Updelta G_{298K}^{o} \; = \; + 2 6. 3 {\text{ kJ}}/{\text{mol}}} \right) \). Alkoxide ionic liquids possessing alkylimidazolium and benzalkonium cations were prepared, characterised and tested together with ZrO2–MgO catalyst for the synthesis of DMC from methanol and CO2. By using the novel ionic liquid as additives, ca. 12% conversion of methanol, and 90% selectivity to DMC was obtained at 120 °C and 7.5 MPa. The water abstracting potential of the ionic liquids influenced the conversion of methanol and the selectivity to DMC. The alkoxide ionic liquids were recovered and reused in DMC synthesis without loss in activity and selectivity.

Graphical abstract

Synthesis of DMC from CO2 and methanol catalysed by ZrO2–MgO using ionic liquid alkoxides as water abstracting additives. Comparison of the fresh and regenerated ionic liquid at 120 °C.

Keywords

Alkoxide ionic liquid Dimethyl carbonate Carbon dioxide Methanol ZrO2–MgO 

Notes

Acknowledgments

This work is part of the activities of Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence (2006–2011), and the KETJU research programme (2006–2010) by the Academy of Finland. The authors are grateful to the Academy of Finland for the financial support under the grants 120853, 124357 and 128626. This work is also associated with the activities of Umeå University Chemical-Biological Centre whereupon financial support from Bio4Energy programme, Kempe Foundations and Knut and Alice Wallenberg Foundation are acknowledged.

References

  1. 1.
    Tundo P, Selva M (2002) Acc Chem Res 35:706–716CrossRefGoogle Scholar
  2. 2.
    Tundo P (2001) Pure Appl Chem 73:1117–1124CrossRefGoogle Scholar
  3. 3.
    Pacheco MA, Marshall CL (1997) Energy Fuels 11:2–29CrossRefGoogle Scholar
  4. 4.
    King ST (1997) Catal Today 33:173–182CrossRefGoogle Scholar
  5. 5.
    Aresta M, Quaranta E (1997) Chem Tech 27:32–40Google Scholar
  6. 6.
    Babad H, Zeiler AG (1997) Chem Rev 73:75–91CrossRefGoogle Scholar
  7. 7.
    Notz R, Tönnies I, McCann N, Scheffknecht G, Hasse H (2011) Chem Eng Technol 34:163–172CrossRefGoogle Scholar
  8. 8.
    Krush A, Vogel H (2008) Chem Eng Technol 31:23–32CrossRefGoogle Scholar
  9. 9.
    Bruggink A, Schoevaart R, Kieboom T (2003) Org Process Res Dev 7:622–640CrossRefGoogle Scholar
  10. 10.
    Aresta M (2002) Fuel Chem Div Preprints 47:255Google Scholar
  11. 11.
    Lee MY, Park DC (1991) Stud Surf Sci Catal 66:631–640CrossRefGoogle Scholar
  12. 12.
    Kizlink J, Pastucha I (1995) Collect Czech Chem Commun 60:687–692CrossRefGoogle Scholar
  13. 13.
    Kizlink J, Pastucha I (1994) Collect Czech. Chem Commun 59:2116–2118CrossRefGoogle Scholar
  14. 14.
    Fang S, Fujimoto K (1996) Appl Catal A 142:L1–L3CrossRefGoogle Scholar
  15. 15.
    Li C-F, S-He Zhong (2003) Catal Today 82:83–90CrossRefGoogle Scholar
  16. 16.
    Tomishige K, Sakaihiro T, Ikeda Y, Fujimoto K (1999) Catal Lett 58:225–229CrossRefGoogle Scholar
  17. 17.
    Jung KT, Bell AT (2001) J Catal 204:339–347CrossRefGoogle Scholar
  18. 18.
    Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) J Catal 192:355–362CrossRefGoogle Scholar
  19. 19.
    Eta V, Mäki-Arvela P, Murzin DYu, Salmi T, Mikkola J-P (2008) Progress in heterogeneous catalysis. In: Marmaduke DL (ed) Nova Science Publishers. Hauppauge, NY, pp 135–155Google Scholar
  20. 20.
    Tomishige K, Kunimori K (2002) Appl Catal A Gen. 237:103–109CrossRefGoogle Scholar
  21. 21.
    Honda M, Kuno S, Sonehara S, Fujimoto K, Suzuki K, Nakagawa Y, Tomishige K (2011) Chem Cat Chem 3:365–370Google Scholar
  22. 22.
    Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Appl Catal A Gen 219:259–266CrossRefGoogle Scholar
  23. 23.
    De C, Lu B, Lv H, Yu Y, Bai Y, Cai Q (2009) Catal Lett 128:459–464CrossRefGoogle Scholar
  24. 24.
    Cui H, Wang T, Wang F, Gu C, Wang P, Dai Y (2004) Ind Eng Chem Res 43:7732–7739CrossRefGoogle Scholar
  25. 25.
    Eta V, Mäki-Arvela P, Leino A-R, Kordás K, Salmi T, Murzin D, Mikkola J-P (2010) Ind Eng Chem Res 49:9609–9617CrossRefGoogle Scholar
  26. 26.
    Dong WS, Zhou X, Xin C, Liu C, Liu Z (2008) Appl Catal A Gen 334:100–105CrossRefGoogle Scholar
  27. 27.
    Ju HY, Manju MD, Kim KH, Park SW, Park DW (2007) Korean J Chem Eng 4:917–919CrossRefGoogle Scholar
  28. 28.
    Virtanen P, Karhu H, Toth G, Kordas K, Mikkola J-P (2009) J Catal 263:209–219CrossRefGoogle Scholar
  29. 29.
    Ju HY, Manju MD, Park DW, Choe Y, Park SW (2007) React Kinet Catal Lett 90:3–9CrossRefGoogle Scholar
  30. 30.
    Wang H, Lu B, Cai QH, Wu F, Shan YK (2005) Chin Chem lett 16:1267–1270Google Scholar
  31. 31.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  32. 32.
    Huddleton JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164CrossRefGoogle Scholar
  33. 33.
    Tommasi I, Sorrentino F (2005) Tetrahedron Lett 46:2141–2145CrossRefGoogle Scholar
  34. 34.
    Tommasi I, Sorrentino F (2006) Tetrahedron Lett 47:6453–6456CrossRefGoogle Scholar
  35. 35.
    Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD (2003) Chem Commun 2003, 28–29. doi: 10.1039/B211519K
  36. 36.
    Duong HA, Tekavec NT, Arif AM, Louie J (2004) Chem Commun 1:112–113CrossRefGoogle Scholar
  37. 37.
    Hong ST, Park HS, Lim JS, Lee Y-W, Masakazu Anpo M, Kim J-D (2006) Res Chem Intermed 32:737–747CrossRefGoogle Scholar
  38. 38.
    Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L, Richard P, Turunen H (2006) Catal Today 115:80–87CrossRefGoogle Scholar
  39. 39.
    Ilgen F, Ott D, kralisch D, Palmberger A, König B (2009) Green Chem 11:1948–1954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Valerie Eta
    • 1
  • Päivi Mäki-Arvela
    • 1
  • Eero Salminen
    • 1
  • Tapio Salmi
    • 1
  • Dmitry Yu. Murzin
    • 1
  • Jyri-Pekka Mikkola
    • 1
    • 2
  1. 1.Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry CentreÅbo Akademi UniversityTurku/ÅboFinland
  2. 2.Technical Chemistry, Department of ChemistryChemical–Biological Center, Umeå UniversityUmeåSweden

Personalised recommendations