Catalysis Letters

, Volume 141, Issue 8, pp 1057–1066

Mechanistic and Adsorption Studies of Relevance to Photocatalysts on Titanium Grafted Mesoporous Silicalites

Article

Abstract

Ti-SBA-15 and Ti-MCM-41 were synthesized and evaluated as possible photocatalysts for the reduction of CO2, and for the photo-Kolbe decomposition of acetic acid. UV-Raman was used to study the adsorption of carbon dioxide, water, formic acid, and acetic acid over Ti-MCM-41 by monitoring the UV enhanced resonance peak of the totally symmetric stretching band of the grafted Ti species at 1,085 cm−1. Acetic and formic acid dissociate on Ti-SBA-15 and Ti-MCM-41 to form acetate and formate, respectively. The conjugate bases subsequently interact strongly with Ti sites. Water interacts with the Ti sites, while no change in the amplitude of the 1,085 cm−1 band is observed in the presence of CO2. Photocatalysis experiments indicate that these mesoporous silicalites are active in the photo-Kolbe decomposition of acetic acid. CO2 is formed by reaction of a hole with the acetate carboxylate groups. The methyl radical co-products react with a surface proton and an electron to form methane. No products resulting from the dimerization of methyl radicals are observed, presumably because of the highly dispersed active sites.

Graphical Abstract

Keywords

Photocatalysis Photo-decomposition Mesoporous silicalites Titanium grafted Ti-SBA-15 Ti-MCM-41 

References

  1. 1.
    Indrakanti VP, Kubicki JD, Schobert HH (2009) Energy Environ Sci 2:745CrossRefGoogle Scholar
  2. 2.
    Hemminger JC, Carr R, Somorjai GA (1978) Chem Phys Lett 57:100CrossRefGoogle Scholar
  3. 3.
    Aurian-Blanjen B, Halmann M, Manassen J (1980) Sol Energy 25:165CrossRefGoogle Scholar
  4. 4.
    Inoue T, Fujishima A, Konishi S et al (1979) Nature 277:637CrossRefGoogle Scholar
  5. 5.
    Ulman M, Tinnemans AHA, Halmann M (1982) Int J Solar Energy 1:213Google Scholar
  6. 6.
    Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:2239CrossRefGoogle Scholar
  7. 7.
    Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:5985CrossRefGoogle Scholar
  8. 8.
    Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  9. 9.
    Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456CrossRefGoogle Scholar
  10. 10.
    Ratnasamy P (2004) Adv Catal 48:1CrossRefGoogle Scholar
  11. 11.
    Anpo M (1998) Catal Today 44:327CrossRefGoogle Scholar
  12. 12.
    Hwang JS, Chang JS, Park SE et al (2004) Stud Surf Sci Catal 153:299CrossRefGoogle Scholar
  13. 13.
    Ikeue K, Yamashita H, Anpo M (2002) Electrochemistry 70:402Google Scholar
  14. 14.
    Ulagappan N (2000) J Phys Chem A 104:7834CrossRefGoogle Scholar
  15. 15.
    Lin WY, Frei H (2002) J Am Chem Soc 124:9292CrossRefGoogle Scholar
  16. 16.
    Hu Y, Wada N, Tsujimaru K et al (2007) Catal Today 120:139CrossRefGoogle Scholar
  17. 17.
    Hwang JS, Chang JS, Park SE et al (2005) Top Catal 35:311CrossRefGoogle Scholar
  18. 18.
    Lin W, Han H, Frei H (2004) J Phys Chem B 108:18269CrossRefGoogle Scholar
  19. 19.
    Lin WY, Cai Q, Pang WQ et al (1999) Microporous Mesoporous Mater 33:187CrossRefGoogle Scholar
  20. 20.
    Hicks JC, Dabestani R, Buchanan AC et al (2006) Chem Mater 18:5022CrossRefGoogle Scholar
  21. 21.
    Maschmeyer T, Rey F, Sankar G et al (1995) Nature 378:159CrossRefGoogle Scholar
  22. 22.
    Tozzola G, Mantegazza MA, Ranghino G et al (1998) J Catal 179:64CrossRefGoogle Scholar
  23. 23.
    Ricchiardi G, Damin A, Bordiga S et al (2001) J Am Chem Soc 123:11409CrossRefGoogle Scholar
  24. 24.
    Li C, Stair PC (1996) 11th international congress on catalysis—40th Anniversary, Pts a and B 101:881Google Scholar
  25. 25.
    Stair PC, Li C (1997) J Vac Sci Technol A 15:1679CrossRefGoogle Scholar
  26. 26.
    Chua YT, Stair PC (2000) J Catal 196:66CrossRefGoogle Scholar
  27. 27.
    Chua YT, Stair PC, Wachs IE (2001) J Phys Chem B 105:8600CrossRefGoogle Scholar
  28. 28.
    Stair PC (1998) Abstr Pap Am Chem Soc 215:U474Google Scholar
  29. 29.
    Socrates G (1980) Infrared characteristic group frequencies. A Wiley-Interscience Publication, New YorkGoogle Scholar
  30. 30.
    Chen MT, Lin YS, Lin YF et al (2004) J Catal 228:259CrossRefGoogle Scholar
  31. 31.
    Herzberg G (1945) Infrared and Raman spectra. Van Nostrand, New YorkGoogle Scholar
  32. 32.
    Glisenti A (1998) Chem Soc Faraday Trans 94:3671CrossRefGoogle Scholar
  33. 33.
    Gaufres R, Maillols J, Tabacik V (1981) J Raman Spectrosc 11:442CrossRefGoogle Scholar
  34. 34.
    Zecchina A, Bordiga S, Lamberti C et al (1996) Catal Today 32:97CrossRefGoogle Scholar
  35. 35.
    Bordiga S, Damin A, Bonino F et al (2003) Phys Chem Chem Phys 5:4390CrossRefGoogle Scholar
  36. 36.
    Lange NA, Dean JA (1973) Lange’s handbook of chemistry, 11th edn. McGraw-Hill, New YorkGoogle Scholar
  37. 37.
    Deluzarche A, Hindermann JP, Kieffer R et al (1985) Rev Chem Intermed 6:255CrossRefGoogle Scholar
  38. 38.
    Ohsawa T, Lyubinetsky IV, Henderson MA et al (2008) J Phys Chem C 112:20050CrossRefGoogle Scholar
  39. 39.
    White JM, Szanyi J, Henderson MA (2004) J Phys Chem B 108:3592CrossRefGoogle Scholar
  40. 40.
    Yang CC, Yu YH, van der Linden B et al (2010) J Am Chem Soc 132:8398CrossRefGoogle Scholar
  41. 41.
    Wang QF, Wang L, Chen JX et al (2007) J Mol Catal A Chem 273:73CrossRefGoogle Scholar
  42. 42.
    Thiele GF, Roland E (1997) J Mol Catal A Chem 117:351CrossRefGoogle Scholar
  43. 43.
    Fox MA, Dulay MT (1993) Chem Rev 93:341CrossRefGoogle Scholar
  44. 44.
    Lin W, Frei H (2005) JACS Commun 127:1610CrossRefGoogle Scholar
  45. 45.
    Green J, Carter E, Murphy DM (2009) Chem Phys Lett 477:340CrossRefGoogle Scholar
  46. 46.
    Wilson JN, Senanayake SD, Idriss H (2004) Surf Sci 562:L231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Catalysis in Energy Processes and Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations