Catalysis Letters

, Volume 141, Issue 7, pp 909–913 | Cite as

Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt

  • G. A. Tritsaris
  • J. Greeley
  • J. Rossmeisl
  • J. K. Nørskov


We estimate the activity of the oxygen reduction reaction on platinum nanoparticles of sizes of practical importance. The proposed model explicitly accounts for surface irregularities and their effect on the activity of neighboring sites. The model reproduces the experimentally observed trends in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component in understanding particle size effects on the activity of catalytic nanoparticles.

Graphical Abstract


Electrocatalysis Nanoparticles DFT Particle size effect Oxygen electroreduction Platinum 



CAMD is funded by the Lundbeck Foundation. This work was supported by the Danish Center for Scientific Computing. Work at the Center for Nanoscale Materials at Argonne was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.

Supplementary material

10562_2011_637_MOESM1_ESM.doc (286 kb)
Supplementary material 1 (DOC 286 kb)


  1. 1.
    Gasteiger H, Kocha S, Sompalli B, Wagner F (2005) Appl Catal B Environ 56:9CrossRefGoogle Scholar
  2. 2.
    Gasteiger HA, Marković NM (2009) Science 324:48CrossRefGoogle Scholar
  3. 3.
    Yano H, Inukai J, Uchida H, Watanabe M, Babu P, Kobayashi T, Chung J, Oldfield E, Wieckowski A (2006) Phys Chem Chem Phys 8:4932CrossRefGoogle Scholar
  4. 4.
    Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163CrossRefGoogle Scholar
  5. 5.
    Mayrhofer K, Blizanac B, Arenz M, Stamenkovic V, Ross P, Markovic N (2005) J Phys Chem B 109:14433CrossRefGoogle Scholar
  6. 6.
    Dahl S, Logadottir A, Egeberg R, Larsen J, Chorkendorff I, Törnqvist E, Nørskov J (1999) Phys Rev Lett 83:1814CrossRefGoogle Scholar
  7. 7.
    Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333CrossRefGoogle Scholar
  8. 8.
    Nørskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) Chem Soc Rev 37:2163CrossRefGoogle Scholar
  9. 9.
    Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science 273:1688CrossRefGoogle Scholar
  10. 10.
    Tian N, Zhou Z, Sun S (2008) J Phys Chem C 112:19801CrossRefGoogle Scholar
  11. 11.
    Vitos L, Ruban A, Skriver H, Kollár J (1998) Surf Sci 411:186CrossRefGoogle Scholar
  12. 12.
    Greeley J (2010) Electrochim Acta 55:5545CrossRefGoogle Scholar
  13. 13.
    Arenz M, Mayrhofer K, Stamenkovic V, Blizanac B, Tomoyuki T, Ross P, Markovic N (2005) J Am Chem Soc 127:6819CrossRefGoogle Scholar
  14. 14.
    Gontard L, Chang L, Hetherington C, Kirkland A, Ozkaya D, Dunin-Borkowski R (2007) Angew Chem Int Edit 46:3683CrossRefGoogle Scholar
  15. 15.
    Henry CR (1998) Surf Sci Rep 31:231CrossRefGoogle Scholar
  16. 16.
    Greeley J, Rossmeisl J, Hellman A, Nørskov J (2007) Z Phys Chem 221:1209Google Scholar
  17. 17.
    Hammer B, Nørskov J (2000) Adv Catal 45:71CrossRefGoogle Scholar
  18. 18.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886CrossRefGoogle Scholar
  19. 19.
    Enkovaara J, Rostgaard C, Mortensen J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H, Kristoffersen H, Kuisma M, Larsen A, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P, Ojanen J, Olsen T, Petzold V, Romero N, Stausholm-Møller J, Strange M, Tritsaris G, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G, Nieminen R, Nørskov J, Puska M, Rantala T, Schiøtz J, Thygesen K, Jacobsen K (2010) J Phys Condens Matter 22:253202CrossRefGoogle Scholar
  20. 20.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  21. 21.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  22. 22.
    Tripković V, Skúlason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975CrossRefGoogle Scholar
  23. 23.
    Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Phys Rev Lett 89:276102CrossRefGoogle Scholar
  24. 24.
    Lee SW, Chen S, Suntivich J, Sasaki K, Adzic RR, Shao-Horn Y (2010) J Phys Chem Lett 1:1316CrossRefGoogle Scholar
  25. 25.
    Nilekar AU, Mavrikakis M (2008) Surf Sci 602:89CrossRefGoogle Scholar
  26. 26.
    Shao-Horn Y, Sheng S, Chen S, Ferreira P, Holby E, Morgan D (2007) Top Catal 46:285CrossRefGoogle Scholar
  27. 27.
    Van Hardeveld R, Hartog F (1969) Surf Sci 15:189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. A. Tritsaris
    • 1
    • 2
  • J. Greeley
    • 3
  • J. Rossmeisl
    • 1
  • J. K. Nørskov
    • 2
    • 4
  1. 1.Center for Atomic-scale Materials Design, Department of PhysicsTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  4. 4.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations