Catalysis Letters

, Volume 141, Issue 7, pp 931–938 | Cite as

Preparation of Co/SiO2 Using Several Glycols for Enhanced Fischer-Tropsch Synthesis Activity and Dispersion of Co0 Nanoparticles with Unique Co0 Particle Size Effect

  • Naoto Koizumi
  • Shigenobu Suzuki
  • Satoshi Niiyama
  • Takayoshi Shindo
  • Muneyoshi Yamada


Co/SiO2 catalysts with highly dispersed Co0 and reducible Co were prepared by impregnation using an aqueous solution of Co nitrate containing ethylene glycol or its homologs. Addition of glycols enhanced FTS activity by a factor of 4. Particle size of Co0 decreased from 30 to below 6 nm, while TOF of the catalysts was independent of the Co0 particle size.

Graphical Abstract


Fischer-Tropsch synthesis Co/SiO2 Glycol Co0 particle size effect 


  1. 1.
    Reuel RC, Bartholomew CH (1984) J Catal 85:78–88CrossRefGoogle Scholar
  2. 2.
    Schulz H, Van Steen E, Claeys M (1994) Stud Surf Sci Catal 81:455–460CrossRefGoogle Scholar
  3. 3.
    Iglesia E (1997) Appl Catal A 161:59–78CrossRefGoogle Scholar
  4. 4.
    Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 1. Springer-Verlag, Berlin, ch 4Google Scholar
  5. 5.
    Davis BH (2001) Fuel Proc Technol 71:157–166CrossRefGoogle Scholar
  6. 6.
    Dry ME (2002) Catal Today 71:227–241CrossRefGoogle Scholar
  7. 7.
    Ming J, Koizumi N, Ozaki T, Yamada M (2001) Appl Catal A 209:59–70CrossRefGoogle Scholar
  8. 8.
    Bian G, Fujishita N, Mochizuki T, Ning W, Yamada M (2003) Appl Catal A 252:251–260CrossRefGoogle Scholar
  9. 9.
    Bian G, Mochizuki T, Fujishita N, Nomoto H, Yamada M (2003) Energ Fuel 17:799–803CrossRefGoogle Scholar
  10. 10.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Von Dillen AJ, De Jong KP (2006) J Am Chem Soc 128:3956–3964CrossRefGoogle Scholar
  11. 11.
    Sun S, Tsubaki N, Fujimoto K (2000) Appl Catal A 202:121–131CrossRefGoogle Scholar
  12. 12.
    Feller A, Claeys M, Van Steen E (1999) J Catal 185:120–130CrossRefGoogle Scholar
  13. 13.
    Prieto G, Martinez A, Concepcion P, Moreno-Tost R (2009) J Catal 266:129–144CrossRefGoogle Scholar
  14. 14.
    Shinoda M, Zhang Y, Yomeyama Y, Hasegawa K, Tsubaki N (2004) Fuel Proc Technol 86:73–85CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Koike M, Yang R, Hinchiranan S, Vitidsant T, Tsubaki N (2005) Appl Catal A 292:252–258CrossRefGoogle Scholar
  16. 16.
    Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Appl Catal A 264:203–212CrossRefGoogle Scholar
  17. 17.
    Jacobs G, Patterson PM, Das TK, Davis BH (2004) Appl Catal A 270:65–76CrossRefGoogle Scholar
  18. 18.
    Kraum M, Baerns M (1999) Appl Catal A 186:189–200CrossRefGoogle Scholar
  19. 19.
    Van Steen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, De Lange M, O’Conner CT (1996) J Catal 162:220–229CrossRefGoogle Scholar
  20. 20.
    Ming H, Baker BG (1995) Appl Catal A 123:23–36CrossRefGoogle Scholar
  21. 21.
    Trujillano R, Villain F, Louis C, Lambert J-F (2007) J Phys Chem C 111:7152–7164CrossRefGoogle Scholar
  22. 22.
    Girardon J-S, Lermotov AS, Gengembre L, Chernavskii PA, Constant AG, Kohdakov AY (2005) J Catal 230:339–352CrossRefGoogle Scholar
  23. 23.
    Mochizuki T, Hara T, Koizumi N, Yamada M (2007) Catal Lett 113:165–169CrossRefGoogle Scholar
  24. 24.
    Mochizuki T, Hara T, Koizumi N, Yamada M (2007) Appl Catal A 317:97–104CrossRefGoogle Scholar
  25. 25.
    Mochizuki T, Koizumi N, Hamabe Y, Hara T, Yamada M (2007) J Jpn Petrol Inst 50:262–271CrossRefGoogle Scholar
  26. 26.
    Koizumi N, Mochizuki T, Yamada M (2009) e-J Surf Sci Nanotech 7:633–640CrossRefGoogle Scholar
  27. 27.
    Mochizuki T, Hongo D, Satoh T, Koizumi N, Yamada M (2008) Catal Lett 121:52–57CrossRefGoogle Scholar
  28. 28.
    Mochizuki T, Sato T, Hongo D, Koizumi N, Yamada M (2008) J Jpn Inst Ener 87:132–138CrossRefGoogle Scholar
  29. 29.
    Mauldin CH, Rouge B (1999) US Patent 5856260Google Scholar
  30. 30.
    Mauldin CH, Rouge B (2001) US Patent 6331575 B1Google Scholar
  31. 31.
    Ellis PR, James D, Bishop PT, Casci JL, Lok CM, Kelly GJ (2009) In: Davis BH, Occelli ML (eds) Advances in Fischer-Tropsch synthesis, catalysts and catalysis. CRC Press, New York, ch 1Google Scholar
  32. 32.
    Borg Ø, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Rytter E (2008) J Catal 259:161–164CrossRefGoogle Scholar
  33. 33.
    Ohtsuka Y, Arai T, Takasaki S, Tsubouchi N (2003) Energ Fuel 17:804–809CrossRefGoogle Scholar
  34. 34.
    Liu Y, Hanaoka T, Miyazawa T, Murata K, Okabe K, Sakanishi K (2009) Fuel Proc Technol 90:901–908CrossRefGoogle Scholar
  35. 35.
    Brown R, Cooper ME, Whan DA (1982) Appl Catal 3:177–186CrossRefGoogle Scholar
  36. 36.
    Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390–406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Naoto Koizumi
    • 1
    • 4
  • Shigenobu Suzuki
    • 1
  • Satoshi Niiyama
    • 1
  • Takayoshi Shindo
    • 2
  • Muneyoshi Yamada
    • 3
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Engineering in Applied Chemistry, Graduate School of Engineering and Resource ScienceAkita UniversityAkitaJapan
  3. 3.Akita National College of TechnologyAkitaJapan
  4. 4.Earth and Mineral Sciences Energy InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations