Advertisement

Catalysis Letters

, Volume 141, Issue 8, pp 1067–1071 | Cite as

Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

  • J. Kleis
  • J. Greeley
  • N. A. Romero
  • V. A. Morozov
  • H. Falsig
  • A. H. Larsen
  • J. Lu
  • J. J. Mortensen
  • M. Dułak
  • K. S. Thygesen
  • J. K. Nørskov
  • K. W. Jacobsen
Article

Abstract

We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold nanoparticles ranging from 13 to 1,415 atoms, or 0.8–3.7 nm, have been made possible by exploiting massively parallel computing on up to 32,768 cores on the Blue Gene/P computer at Argonne National Laboratory. We show that bulk surface properties are obtained for clusters larger than ca. 560 atoms (2.7 nm). Below that critical size, finite-size effects can be observed, and we show those to be related to variations in the local atomic structure augmented by quantum size effects for the smallest clusters.

Graphical Abstract

Keywords

Nano-particle Size effects DFT 

Notes

Acknowledgement

This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. The researchers’ use of Argonne's Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, also under contract No. DE-AC02-06CH11357. Additional support from the Office of Science of the U.S. Department of Energy to the SUNCAT Center for Interface Science and Catalysis at SLAC/Stanford, the NABIIT program under the Danish Strategic Research Council, and from the Lundbeck Foundation to the Center for Atomic-scale Materials Design at DTU is gratefully acknowledged.

Supplementary material

10562_2011_632_MOESM1_ESM.pdf (201 kb)
Supplementary material 1 (PDF 200 kb)

References

  1. 1.
    Thomas JM, Thomas WJ (1997) Principle and practice of heterogeneous catalysis. VCH, WeinheimGoogle Scholar
  2. 2.
    Li Y, Somorjai GA (2010) Nano Lett 10:2289CrossRefGoogle Scholar
  3. 3.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  4. 4.
    Bond GC, Thompson DT (1994) Catal Rev Sci Eng 41:319CrossRefGoogle Scholar
  5. 5.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405CrossRefGoogle Scholar
  6. 6.
    Ertl G (2008) Angew Chem Int Ed 47:3524CrossRefGoogle Scholar
  7. 7.
    Somorjai GA, Park JY (2008) Chem Soc Rev 37:2155CrossRefGoogle Scholar
  8. 8.
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S et al (2005) Science 307:555CrossRefGoogle Scholar
  9. 9.
    Jiang T, Mowbray D, Dobrin S, Falsig H, Hvolbaek B, Bligaard T et al (2009) J Phys Chem C 113:10548CrossRefGoogle Scholar
  10. 10.
    Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN et al (1999) J Phys Chem A. 103:9573CrossRefGoogle Scholar
  11. 11.
    Chretien S, Gordon MS, Metiu H (2004) J Chem Phys 121:3756CrossRefGoogle Scholar
  12. 12.
    Lopez-Acevedo O, Kacprzak KA, Akola J, Hakkinen H (2010) Nat Chem 2:329CrossRefGoogle Scholar
  13. 13.
    Pyykko P (2008) Chem Soc Rev 37:1967CrossRefGoogle Scholar
  14. 14.
    Mpourmpakis G, Andriotis AN, Vlachos DG (2010) Nano Lett 10:1041CrossRefGoogle Scholar
  15. 15.
    Xie Y-P, Gong X-G (2010) J Chem Phys 132:244302CrossRefGoogle Scholar
  16. 16.
    Roldan A, Manel Ricart J, Illas F, Pacchioni G (2010) Phys Chem Chem Phys 12:10723CrossRefGoogle Scholar
  17. 17.
    Yudanov I, Metzner M, Genest A, Rosch N (2008) J Phys Chem C 112:20269CrossRefGoogle Scholar
  18. 18.
    Martin TP (1996) Phys Rep 273:199CrossRefGoogle Scholar
  19. 19.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L et al (2010) J Phys Condens Matter 22:1CrossRefGoogle Scholar
  20. 20.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  21. 21.
    Blocl P (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  22. 22.
    Hammer B, Hansen LB, Norskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  23. 23.
    Boyen HG, Kastle G, Weigl F, Koslowski B, Dietrich C, Ziemann P et al (2002) Science 297:1533CrossRefGoogle Scholar
  24. 24.
    Bader RFW (1990) Atoms in molecules: a quantum Theory Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801CrossRefGoogle Scholar
  26. 26.
    Inoglu N, Kitchin JR (2010) Phys Rev B 82:045414CrossRefGoogle Scholar
  27. 27.
    von Issendorff B, Cheshnovsky O (2005) Annu Rev Phys Chem 56:549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Kleis
    • 1
  • J. Greeley
    • 2
  • N. A. Romero
    • 3
  • V. A. Morozov
    • 3
  • H. Falsig
    • 1
  • A. H. Larsen
    • 1
  • J. Lu
    • 1
  • J. J. Mortensen
    • 1
  • M. Dułak
    • 1
  • K. S. Thygesen
    • 1
  • J. K. Nørskov
    • 1
    • 4
    • 5
  • K. W. Jacobsen
    • 1
  1. 1.Department of Physics, Center for Atomic-Scale Materials DesignTechnical University of DenmarkLyngbyDenmark
  2. 2.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  3. 3.Leadership Computing FacilityArgonne National LaboratoryArgonneUSA
  4. 4.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA
  5. 5.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations