Advertisement

Catalysis Letters

, Volume 141, Issue 5, pp 685–690 | Cite as

Silver Nanoparticle Catalyzed Selective Hydration of Nitriles to Amides in Water Under Neutral Conditions

  • A. Y. Kim
  • Hee Seon Bae
  • Suhwan Park
  • Sungkyun ParkEmail author
  • Kang Hyun ParkEmail author
Article

Abstract

Ag NPs can efficiently catalyze hydration of nitriles to amide in water. This hydration method used water as solvent and Ag catalyst that can be recycled under neutral conditions, so it can make a great contribution settling the process that is environmentally better and industrially more satisfactory.

Graphical Abstract

Ag NPs can efficiently catalyze hydration of nitriles to amide in water. This hydration method used water as a solvent and Ag catalyst that can be recycled under neutral conditions, so it can make a great contribution to settling the process that is environmentally better and industrially more satisfactory.

Keywords

Silver Nanoparticles Hydration Nitriles Water Catalyst 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0070926, 2010-0002834) and by the Research Fund Program of Research Institute for Basic Sciences, Pusan National University, Korea, 2010, Project No. RIBS-PNU-2010-304. K.H.P thank to the TJ Park Junior Faculty Fellowship. S.P. thanks for the partial support from KOSEF (R01-2008-000-21092-0).

References

  1. 1.
    Nakai T, Iwai T, Mihara M, Ito T, Mizuno T (2010) Tetrahedron Lett 51:2225CrossRefGoogle Scholar
  2. 2.
    Xu D, Bliznakov S, Liu Z, Fang J, Dimitrov N (2010) Angew Chem Int Ed 49:1282CrossRefGoogle Scholar
  3. 3.
    McCarren PR, Liu P, Cheong PH, Jamison TF, Houk KN (2009) J Am Chem Soc 131:6654CrossRefGoogle Scholar
  4. 4.
    Kowalska E, Abe R, Ohtani B (2009) Chem Commun 241Google Scholar
  5. 5.
    Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Chem Mater 14:4736CrossRefGoogle Scholar
  6. 6.
    Im SH, Lee YT, Wiley B, Xia Y (2005) Angew Chem Int Ed 44:2154CrossRefGoogle Scholar
  7. 7.
    Beier MJ, Hansen TW, Grunwaldt J (2009) J Catalysis 266:320CrossRefGoogle Scholar
  8. 8.
    Purcar V, Donescu D, Petcu C, Luque R, Macquarrie DJ (2009) Appl Catal A 363:122CrossRefGoogle Scholar
  9. 9.
    Mitsudome T, Arita S, Mori H, Mizugaki T, Jitsukawa K, Kaneda K (2008) Angew Chem Int Ed 47:7938CrossRefGoogle Scholar
  10. 10.
    Yamada H, Kobayashi M (1996) Biosci Biotechnol Biochem 60:1391CrossRefGoogle Scholar
  11. 11.
    Rivara S, Lodola A, Mor M, Bedini A, Spadoni G, Lucini V, Pannacci M, Fraschini F, Scaglione F, Sanchez RO, Gobbi G, Tarzia G (2007) J Med Chem 50:6618CrossRefGoogle Scholar
  12. 12.
    Mitsudome T, Mikami Y, Mori H, Arita S, Mizugaki T, Jitsukawa K, Kaneda K (2009) Chem Commun 14(22):3258–3260CrossRefGoogle Scholar
  13. 13.
    Kim JH, Britten J, Chin J (1993) J Am Chem Soc 115:3618CrossRefGoogle Scholar
  14. 14.
    Djoman MCK, Ajjou AN (2000) Tetrahedron Lett 41:4845CrossRefGoogle Scholar
  15. 15.
    Katrizky AR, Pilarski B, Urogdi L (1989) Synthesis 12:949CrossRefGoogle Scholar
  16. 16.
    Ali S, Farshid M, Mohammad MM, Mohammad RS, Said B (2001) Synth Commun 31:431CrossRefGoogle Scholar
  17. 17.
    Merchant KJ (2000) Tetrahedron Lett 413:747Google Scholar
  18. 18.
    Bose DS, Baquer SM (1997) Synth Commun 27:3119CrossRefGoogle Scholar
  19. 19.
    Sun Y, Xia Y (2002) Adv Mater 14:833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityBusanKorea
  2. 2.Department of PhysicsPusan National UniversityBusanKorea

Personalised recommendations