Advertisement

Catalysis Letters

, Volume 141, Issue 4, pp 491–497 | Cite as

Synthesis of Nanorods with Ni Cores and Porous Silica Coatings

  • N. ShuklaEmail author
  • J. B. Miller
  • E. Coletta
  • A. D. Ondeck
  • V. Pushkarev
  • A. J. Gellman
Article

Abstract

Nanorods with a Ni core and a silica coating have been prepared using a one-step synthesis and characterized using a variety of methods. Nitrogen adsorption isotherms have been used to characterize the pore size and the internal surface area of the silica shells grown on the Ni nanorods. Spectroscopic characterization of CO adsorbed on the Ni nanoparticle cores has been used to verify that the pore structure of the silica shells allows CO to access the Ni core; this property is critical to the use of core–shell structures as industrial catalysts. To demonstrate their resistance to physical and chemical degradation, the properties of the silica-coated Ni nanoparticles have been measured both before and after treatment at high temperature (623 - 1073 K) and exposure to a reducing atmosphere (hydrogen gas). Annealing at high temperatures reduces, but does not eliminate, the porosity of the silica shells.

Graphical Abstract

Bright field TEM imaging of Ni nanorods encapsulated in porous silica coatings.

Keywords

Nanoparticulate catalyst Silica coatings Ni nanoparticles 

Notes

Acknowledgment

This effort was performed in support of the National Energy Technology Laboratory’s on-going research in “Next generation, sinter-resistant, catalysts for syngas conversion”, under the RES contract DE-FE0004000.

References

  1. 1.
    Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Top Catal 39:167CrossRefGoogle Scholar
  2. 2.
    Kweskin SJ, Rioux RM, Habas SE, Komvopoulos K, Yang P, Somorjai GA (2006) J Phys Chem B 110:15920CrossRefGoogle Scholar
  3. 3.
    Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nanoletters 7:3097Google Scholar
  4. 4.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861CrossRefGoogle Scholar
  5. 5.
    Le Y, Hou P, Wang J, Chen JF (2010) Mater Chem Phys 120:351CrossRefGoogle Scholar
  6. 6.
    He Rong, You X, Shao J, Gao F, Pan B, Cui D (2007) Nanotechnology 18:315601CrossRefGoogle Scholar
  7. 7.
    Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) J Phys Chem B 110:11160CrossRefGoogle Scholar
  8. 8.
    Philipse AP, Bruggen MPBV, Pathmamanoharan C (1994) Langmuir 10:92CrossRefGoogle Scholar
  9. 9.
    Aslam M, Fu L, Dravid V (2005) J Colloid Interface Sci 290:444CrossRefGoogle Scholar
  10. 10.
    Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) J Am Chem Soc 127:4990CrossRefGoogle Scholar
  11. 11.
    Park JN, Forman AJ, Tang W, Cheng J, Hu YS, Lin H, McFarland EW (2008) Small 10:1694CrossRefGoogle Scholar
  12. 12.
    Arnal PM, Comotti M, Schuth F (2006) Angew Chem Int Ed 45:8224CrossRefGoogle Scholar
  13. 13.
    Yu KMK, Thompsett D, Tsang SC (2003) Chem Commun 13:1522CrossRefGoogle Scholar
  14. 14.
    Jana NR, Earhart C, Yang JY (2007) Chem Mater 19:5074CrossRefGoogle Scholar
  15. 15.
    Tago T, Shibata Y, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) J Mater Sci 37:977CrossRefGoogle Scholar
  16. 16.
    Tago T, Nagase R, Hatsuta T, Kishida M, Wakabayashi K (2000) J Jpn Soc Powder Powder Metall ICF8: 763Google Scholar
  17. 17.
    Takenaka S, Umebayashi H, Tanabe E, Matsune H, Kishida M (2007) J Catal 245:392CrossRefGoogle Scholar
  18. 18.
    Kobayashi Y, Correa-Duarte MA, Liz-Marzan LM (2001) Langmuir 17:6375CrossRefGoogle Scholar
  19. 19.
    Hyashi H, Chen LZ, Tago T, Kishida M, Wakabayashi K (2002) Appl Catal A 231:81CrossRefGoogle Scholar
  20. 20.
    Obare SO, Jana NR, Murphy CJ (2001) Nano Lett 11:601CrossRefGoogle Scholar
  21. 21.
    Botell P, Corma A, Navarro MT (2007) Chem Mater 19:1979CrossRefGoogle Scholar
  22. 22.
    Grzelczak M, Rodriguez-Gonzalez B, Perez-Juste J, Liz-Marzan LM (2007) Adv Mater 19:2262CrossRefGoogle Scholar
  23. 23.
    Carenco S, Boissiere C, Nicole L, Sanchez C, Floch PL, Mezailles N (2010) Chem Mater 22:1340CrossRefGoogle Scholar
  24. 24.
    Chen DH, Wu SH (2000) Chem Mater 12:1354CrossRefGoogle Scholar
  25. 25.
    Khanna PK, More PV, Jawalkar JP, Bharte BG (2009) Mater Lett 63:1384CrossRefGoogle Scholar
  26. 26.
    Yao X, Zhang L, Wang S (1995) Sens Actuators B Chem 24–25:347Google Scholar
  27. 27.
    Sato S, Takahashi R, Sodesawa T, Tanaka R (2003) Bull Chem Soc Jpn 76:217CrossRefGoogle Scholar
  28. 28.
    Mihaylov M, Hadjiivanov K, Knozinger H (2001) Catal Lett 76:59CrossRefGoogle Scholar
  29. 29.
    Rao KM, Spoto G, Zecchina A (1989) Langmuir 5:319CrossRefGoogle Scholar
  30. 30.
    Heiz U (1998) Appl Phys A 67:621CrossRefGoogle Scholar
  31. 31.
    Lauterbach J, Wittmann M, Kuppers J (1992) Surf Sci 279:287CrossRefGoogle Scholar
  32. 32.
    Coulter K, Xu X, Goodman DW (1994) J Phys Chem 98:1245CrossRefGoogle Scholar
  33. 33.
    Ueckert T, Lamber R, Jaeger NI, Schubert U (1997) Appl Catl A 155:75CrossRefGoogle Scholar
  34. 34.
    Storozhev PY, Arean CO, Garrone E, Ugliengo P, Ermoshin VA, Tsyganenko AA (2003) Chem Phys Lett 374:439CrossRefGoogle Scholar
  35. 35.
    Rupprechter G, Dellwig T, Unterhalt H, Freund HJ (2001) Top Catal 15:19CrossRefGoogle Scholar
  36. 36.
    Zhu X, Zhang YP, Liu CJ (2007) Catal Lett 118:306CrossRefGoogle Scholar
  37. 37.
    Ermakova MA, Ermakov DY (2002) Catal Today 77:225CrossRefGoogle Scholar
  38. 38.
    Takenaka S, Kobayashi S, Ogihara H, Otsuka K (2003) J Catal 217:79Google Scholar
  39. 39.
    Venugopal A, Naveen Kumar S, Ashok J, Hari Prasad D, Durga Kumari V, Prasad KBS, Subrahmanyam M (2007) Int J Hydrogen Energy 32:1782Google Scholar
  40. 40.
    Gao J, Hou Z, Guo J, Zhu Y, Zheng X (2008) Catal Today 131:278CrossRefGoogle Scholar
  41. 41.
    Hadjiivanov K, Mihaylov M, Klissurski D, Stefanov P, Abadjieva N, Vassileva E, Mintchev L (1999) J Catal 185:314CrossRefGoogle Scholar
  42. 42.
    He S, Jing Q, Yu W, Mo L, Lou H, Zheng X (2009) Catal Today 148:130CrossRefGoogle Scholar
  43. 43.
    Li J, Lu G (2004) Appl Catal A Gen 273:163CrossRefGoogle Scholar
  44. 44.
    Borowiecki T, Denis A, Gac W, Dziembaj R, Piwowarska Z, Drozdek M (2004) Appl Catal A Gen 274:259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • N. Shukla
    • 1
    • 2
    Email author
  • J. B. Miller
    • 1
    • 3
  • E. Coletta
    • 3
  • A. D. Ondeck
    • 3
  • V. Pushkarev
    • 3
  • A. J. Gellman
    • 1
    • 3
  1. 1.US DOE—National Energy and Technology LaboratoryPittsburghUSA
  2. 2.Institute for Complex Engineered SystemsCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations