Advertisement

Catalysis Letters

, Volume 141, Issue 3, pp 452–458 | Cite as

Catalytic Methane Combustion over Co3O4/CeO2 Composite Oxides Prepared by Modified Citrate Sol–Gel Method

  • Hongfeng Li
  • Guanzhong Lu
  • Dongsheng Qiao
  • Yanqin Wang
  • Yun Guo
  • Yanglong Guo
Article

Abstract

Co–Ce–O composite oxides with high surface areas were firstly prepared by a modified citrate sol–gel method with N2 thermal treatment prior to calcination in air. The prepared Co–Ce–O catalysts have higher Brunauer–Emmett–Teller surface areas than those prepared by conventional calcination in air, and thus exhibit more effective catalytic activities. Adding CeO2 into Co3O4 can not only increase the activity of Co3O4 but also greatly enhance its thermal stability. When the bulk atomic ratio of Co/Ce is 3/1, Co–Ce–O composite oxide possesses the best activity and stability for the methane combustion.

Graphical Abstract

Keywords

Co–Ce–O composite oxide Modified citrate sol–gel method Methane combustion Thermal stability 

Notes

Acknowledgments

This work was supported financially by the National Basic Research Program of China (2010CB732300), and the National Natural Science Foundation of China (20673037, 20601008).

References

  1. 1.
    Zwinkels MFM, Jaras SG, Menon PG, Griffin TA (1993) Catal Rev Sci Eng 35:319CrossRefGoogle Scholar
  2. 2.
    Bach C, Lämmle C, Bill R, Soltic P, Dyntar D, Janner P, Boulouchos K, Onder C, Landenfeld T, Kercher L, Seel O, Baronick JD (2004) SAE Technical Paper 010645. doi: 10.4271/2004-01-0645
  3. 3.
    Gélin P, Primet M (2002) Appl Catal B 39:1CrossRefGoogle Scholar
  4. 4.
    Guerrero S, Araya P, Wolf EE (2006) Appl Catal A 298:243CrossRefGoogle Scholar
  5. 5.
    Svensson EE, Boutonnet M, Järås SG (2008) Appl Catal B 84:241CrossRefGoogle Scholar
  6. 6.
    Campagnoli E, Tavares A, Fabbrini L, Rossetti I, Dubitsky YA, Zaopo A, Forni L (2005) Appl Catal B 55:133CrossRefGoogle Scholar
  7. 7.
    Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A 234:1CrossRefGoogle Scholar
  8. 8.
    Jansson J (2000) J Catal 194:55CrossRefGoogle Scholar
  9. 9.
    Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) J Catal 211:387Google Scholar
  10. 10.
    González-Velasco JR, Gutiérrez-Ortiz MA, Marc JL, Botas JA, González-Marcos MP, Blanchard G (1999) Appl Catal B 22:167CrossRefGoogle Scholar
  11. 11.
    González-Velasco JR, Gutiérrez-Ortiz MA, Marc JL, González-Marcos MP, Blanchard G (2001) Appl Catal B 33:303CrossRefGoogle Scholar
  12. 12.
    Kang M, Song MW, Lee CH (2003) Appl Catal A 251:143CrossRefGoogle Scholar
  13. 13.
    Tang CW, Kuo CC, Kuo MC, Wang CB, Chien SH (2006) Appl Catal A 309:37CrossRefGoogle Scholar
  14. 14.
    Harrison PG, Ball IK, Daniell W, Lukinskas P, Céspedes M, Miró EE, Ulla MA (2003) Chem Eng J 95:47CrossRefGoogle Scholar
  15. 15.
    Xue L, Zhang C, He H, Teraoka Y (2007) Appl Catal B 75:167CrossRefGoogle Scholar
  16. 16.
    Natile MM, Glisenti A (2005) Chem Mater 17:3403CrossRefGoogle Scholar
  17. 17.
    Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2005) Catal Commun 6:329CrossRefGoogle Scholar
  18. 18.
    Liotta LF, Di Carlo G, Pantaleo G, Venezia AM, Deganello G (2006) Appl Catal B 66:217CrossRefGoogle Scholar
  19. 19.
    Qazi SJ, Rennie AR, Cockcroft JK, Vickers M (2009) J Colloid Interface Sci 338:105CrossRefGoogle Scholar
  20. 20.
    Pomonis PJ, Petrakis DE, Ladavos AK, Kolonia KM, Armatas GS, Sklari SD, Dragani PC, Zarlaha A, Stathopoulos VN, Sdoukos AT (2004) Micropor Mesopor Mater 69:97CrossRefGoogle Scholar
  21. 21.
    Xie GQ, Luo MF, He M, Fang P, Ma JM, Ying YF, Yan ZL (2007) J Nanopart Res 9:471CrossRefGoogle Scholar
  22. 22.
    Li HF, Lu GZ, Dai QG, Wang YQ, Guo Y, Guo YL (2010) ACS Appl Mater Interfaces 2(3):838CrossRefGoogle Scholar
  23. 23.
    Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) J Catal 254:310CrossRefGoogle Scholar
  24. 24.
    Kang M, Song MW, Lee CH (2003) Appl Catal A 251:143CrossRefGoogle Scholar
  25. 25.
    Alexandrou M, Nix RM (1994) Surf Sci 321:47CrossRefGoogle Scholar
  26. 26.
    Kotani A, Jo T, Parlebas JC (1998) Adv Phys 37:37CrossRefGoogle Scholar
  27. 27.
    Chang LH, Sasirehka N, Chen YW, Wang WJ (2006) Ind Eng Chem Res 45:4927CrossRefGoogle Scholar
  28. 28.
    Dutta P, Pal S, Seehra MS, Shi Y, Eyring EM, Ernst RD (2006) Chem Mater 18:5144CrossRefGoogle Scholar
  29. 29.
    Zhang F, Chan SW, Spanier JE, Apak E, Jin Q (2002) Appl Phys Lett 80:127CrossRefGoogle Scholar
  30. 30.
    Wu LJ, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu YM, Welch DO, Suenaga M (2004) Phys Rev B 69:125415CrossRefGoogle Scholar
  31. 31.
    Li HF, Lu GZ, Wang YQ, Guo Y, Guo YL (2010) Catal Commun 11:946CrossRefGoogle Scholar
  32. 32.
    Liotta LF, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Marcì G, Retailleau L, Giroir-Fendler A (2008) Appl Catal A 347:81CrossRefGoogle Scholar
  33. 33.
    Khodakov A, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16CrossRefGoogle Scholar
  34. 34.
    Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2007) Appl Catal B 70:314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hongfeng Li
    • 1
  • Guanzhong Lu
    • 1
  • Dongsheng Qiao
    • 1
  • Yanqin Wang
    • 1
  • Yun Guo
    • 1
  • Yanglong Guo
    • 1
  1. 1.Key Laboratory for Advanced Materials and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations