Advertisement

Catalysis Letters

, Volume 141, Issue 2, pp 322–331 | Cite as

Insights into the Reactivity of La1−x Sr x MnO3 (x = 0 ÷ 0.7) in High Temperature N2O Decomposition

  • D. V. IvanovEmail author
  • L. G. Pinaeva
  • L. A. Isupova
  • A. N. Nadeev
  • I. P. Prosvirin
  • L. S. Dovlitova
Article

Abstract

In this paper a wide range of La1−x Sr x MnO3 (x = 0–0.7) perovskites was synthesized by Pechini route, characterized by XRD (including high temperature measurements), XPS, differential dissolution phase analysis, TPR H2, oxygen exchange and tested in N2O decomposition at 900 °C. At low degree of Sr substitution for La (x ≤ 0.3), high catalytic activity was found for perovskites with hexagonal structure (x = 0.1–0.2) and can be related to fast oxygen mobility caused by the lattice disordering during polymorphic phase transition from the hexagonal to cubic structure. For multiphase samples (x > 0.3) increase of activity and oxygen mobility can be attributed to the formation of the layer-structured perovskite–LaSrMnO4 on the surface.

Graphical Abstract

Catalytic activity of La–Sr–Mn–O samples in high-temperature N2O decomposition is discussed with emphasis on its relation to oxygen mobility, surface composition and microstructure of the catalyst particles.

Keywords

La–Sr–Mn mixed oxide Layer-structured perovskite Nitrous oxide decomposition Oxygen mobility Polymorphic phase transition Microdistortions 

Abbreviations

DDPA

Differential dissolution phase analysis

Notes

Acknowledgments

We would like to acknowledge the contribution of Dr. Ekaterina Sadovskaya for modeling of oxygen exchange, Prof. Sergey Tsybulya for fruitful discussion, Mrs. Nina Kulikovskaya for assistance in samples preparation and Mr. Eugene Gerasimov for XRD measurements.

References

  1. 1.
    Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) J Catal 267(1):5–13Google Scholar
  2. 2.
    Yamazoe N, Teraoka Y (1990) Catal Today 8:175–179Google Scholar
  3. 3.
    Seyama T (1993) In: Tejuca LG, Fierro JLG (eds) Properties and application of perovskite-type oxides. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Ponce S, Pena MA, Fierro JLG (2000) Appl Catal B: Environ 24:193–205Google Scholar
  5. 5.
    O’Connel M, Norman AK, Huttermann CF, Morris MA (1999) Catal Today 47:123–132Google Scholar
  6. 6.
    Kinner SJS, Sayers R, Grimes RW (2005) In: Stammes N et al (eds) Full cell technologies: state and perspectives. Springer, NetherlandsGoogle Scholar
  7. 7.
    Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H (2008) Solid State Ionics 178:1843–1852Google Scholar
  8. 8.
    Pechini MP (1967) US Patent no. 3,330,697Google Scholar
  9. 9.
    Karita R, Kusaba H, Sasaki K, Teraoka Y (2007) Catal Today 126:471–475Google Scholar
  10. 10.
    Malakhov VV (2000) J Mol Catal A 158:143–148Google Scholar
  11. 11.
    Berger RJ, Kapteijn F, Moulijn JA, Marin GB, Wilde JD, Olea M, Chen D, Holmen A, Lietti L, Tronconi E, Schuurman Y (2008) Appl Catal A: Gen 342:3–28Google Scholar
  12. 12.
    Mizutani N, Kitazawa A, Ohkuma N, Kato M (1970) J Chem Soc (Japan) Ind Ed 73:1097–1103Google Scholar
  13. 13.
    Cherepanov VA, Barkhatova LYu, Voronin VL (1997) J Solid State Chem 134:38–44Google Scholar
  14. 14.
    Majewski P, Epple L, Rozumek M, Schluckwerder H, Aldiner F (2000) J Mater Res 15(5):1161–1166Google Scholar
  15. 15.
    Rormark L, Wiik K, Stolen S, Grande T (2002) J Mater Chem 12:1058–1067Google Scholar
  16. 16.
    Atsumi T, Kamegashira N (1997) J Alloys Compd 257:161–167Google Scholar
  17. 17.
    Andrieux M, Picard C (2000) J Mater Sci Lett 19:695–697Google Scholar
  18. 18.
    Kapteijn F, Rodriguez–Mirasol J, Moulijn J (1996) Appl Catal B: Environ 9:25–64Google Scholar
  19. 19.
    Sazonov LA, Mosvina ZV, Artamonov EV (1970) Kinet Katal 15:120Google Scholar
  20. 20.
    Winter ERS (1968) J Chem Soc A 12:2889Google Scholar
  21. 21.
    Raj SL, Srinivasan V (1980) J Cat 65(1):121Google Scholar
  22. 22.
    Winter ERS (1974) J Catal 34:431–439Google Scholar
  23. 23.
    Dulli H, Dowben PA, Liou SH, Plummer EW (2000) Phys Rev B 62(22):R14629Google Scholar
  24. 24.
    Hirsch PH, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1965) Electron microscopy of thin crystal. Butterworths, LondonGoogle Scholar
  25. 25.
    Isupova LA, Nadeev AN, Yakovleva IS, Tsybulya SV (2007) Kinet Catal 49(1):142–146Google Scholar
  26. 26.
    Vogt T, Schmahl WW (1993) Europhys Lett 24(4):281–285Google Scholar
  27. 27.
    Goodenough JB (2003) In: Gschneidner KA Jr, Bunzli J-CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earth, vol 33. Elsevier Science B.V., North-HollandGoogle Scholar
  28. 28.
    Li RK, Gleaves C (2000) J Solid State Chem 153:34–40Google Scholar
  29. 29.
    Kharton VV, Sobyanin VA, Belyaev VA, Semin GL, Veniaminov SV, Tsipis EV, Yaremchenko AA, Valente AA, Marozau IP, Frade JR, Rocha J (2004) Catal Commun 5(6):311–316Google Scholar
  30. 30.
    Yakovleva IS, Isupova LA, Rogov VA, Sadykov VA (2008) Kinet Catal 49:274–283Google Scholar
  31. 31.
    Ciambelli P, Cimino S, De Rossi S, Faticanti M, Lisi L, Minelli G, Pettiti I, Porta P, Russo G, Turko M (2000) Appl Catal B: Environ 24:243Google Scholar
  32. 32.
    Swamy CS, Christopher J (1992) Catal Rev Sci Eng 34(4):409Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. V. Ivanov
    • 1
    Email author
  • L. G. Pinaeva
    • 1
  • L. A. Isupova
    • 1
  • A. N. Nadeev
    • 1
  • I. P. Prosvirin
    • 1
  • L. S. Dovlitova
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations