Catalysis Letters

, Volume 141, Issue 2, pp 213–221 | Cite as

Chemistry in the Center for Catalytic Hydrocarbon Functionalization: An Energy Frontier Research Center

  • Suzanne R. Golisz
  • T. Brent GunnoeEmail author
  • William A. GoddardIII
  • John T. Groves
  • Roy A. Periana


Selective catalysts that activate small molecules such as hydrocarbons, dioxygen, water, carbon dioxide and dihydrogen are central to new technologies for the use of alternative energy sources. For example, controlled hydrocarbon functionalization can lead to high impact technologies, but such catalysts require a level of molecular control beyond current means. The Center for Catalytic Hydrocarbon Functionalization facilitates collaborations among research groups in catalysis, materials, electrochemistry, bioinorganic chemistry and quantum mechanics to develop, validate and optimize new methods to rearrange the bonds of hydrocarbons, activate and transform water and carbon dioxide, implement enzymatic strategies into synthetic systems and design optimal environments for catalysis.

Graphical Abstract


Carbon dioxide Catalysis Energy Fuel cell Functionalization Hydrocarbon Methane Methanol 



This publication is based upon work supported as part of the Center for Catalytic Hydrocarbon Functionalization, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001298.


  1. 1.
    Energy Information Administration (2008) Annual energy reviewGoogle Scholar
  2. 2.
    Basic Energy Sciences Advisory Committee (2003) Basic research needs to assure a secure energy futureGoogle Scholar
  3. 3.
    Energy Information Administration (2009) International energy statisticsGoogle Scholar
  4. 4.
    Energy information administration voluntary reporting of greenhouse gases program: fuel and energy source codes and emission coefficients (2008)Google Scholar
  5. 5.
    Energy Information Administration (2010) International energy outlookGoogle Scholar
  6. 6.
    Gol’dshleger NF, Es’kova VV, Shilov AE, Shteinman AA (1972) Zh Fiz Khim 46:1353Google Scholar
  7. 7.
    Labinger JA, Bercaw JE (2002) Nature 417:507Google Scholar
  8. 8.
    Groves JT (1985) J Chem Educ 62:928Google Scholar
  9. 9.
    John Groves T (2004) In: De Montellano PRO (ed) Cytochrome P450: structure mechanism and biochemistry. Kluwer Academic, New YorkGoogle Scholar
  10. 10.
    Bell SR, Groves JT (2009) J Am Chem Soc 131:9640Google Scholar
  11. 11.
    Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560Google Scholar
  12. 12.
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, Du Bois DL, Eckert J, Fujita E, Gibson DH, Goddard WA III, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana RA, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem Rev 101:953Google Scholar
  13. 13.
    Vedernikov AN, Binfield SA, Zavalij PY, Khusnutdinova JR (2006) J Am Chem Soc 128:82Google Scholar
  14. 14.
    Vedernikov AN (2009) Chem Commun 4781Google Scholar
  15. 15.
    Feng Y, Lail M, Barakat KA, Cundari TR, Gunnoe TB, Petersen JL (2005) J Am Chem Soc 127:14174Google Scholar
  16. 16.
    Feng Y, Lail M, Foley NA, Gunnoe TB, Barakat KA, Cundari TR, Petersen JL (2006) J Am Chem Soc 128:7982Google Scholar
  17. 17.
    Tenn WJ III, Young KJH, Bhalla G, Oxgaard J, Goddard WA III, Periana RA (2005) J Am Chem Soc 127:14172Google Scholar
  18. 18.
    Bercaw JE, Hazari N, Labinger JA (2009) Organometallics 28:5489Google Scholar
  19. 19.
    Kloek SM, Heinekey DM, Goldberg KI (2007) Angew Chem Int Ed 46:4736Google Scholar
  20. 20.
    Hanson SK, Heinekey DM, Goldberg KI (2008) Organometallics 27:1454Google Scholar
  21. 21.
    Conley BL, Ganesh SK, Gonzales JM, Tenn WJ III, Young KJH, Oxgaard J, Goddard WA III, Periana RA (2006) J Am Chem Soc 128:9018Google Scholar
  22. 22.
    Gonzales JM, Distasio R Jr, Periana RA, Goddard WA III, Oxgaard J (2007) J Am Chem Soc 129:15794Google Scholar
  23. 23.
    Conley BL, Ganesh SK, Gonzales JM, Ess DH, Nielsen RJ, Ziatdinov VR, Oxgaard J, Goddard WA III, Periana RA (2008) Angew Chem Int Ed 47:7849Google Scholar
  24. 24.
    Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) J Am Chem Soc 130:16462Google Scholar
  25. 25.
    Chen Z, Concepcion JJ, Jurss JW, Meyer TJ (2009) J Am Chem Soc 131:15580Google Scholar
  26. 26.
    Concepcion JJ, Tsai M, Muckerman JT, Meyer TJ (2010) J Am Chem Soc 132:1545Google Scholar
  27. 27.
    Chen Z, Concepcion JJ, Hull JF, Hoertz PG, Meyer TJ (2010) Dalton Trans 39:6950Google Scholar
  28. 28.
    Zhou M, Schley ND, Crabtree RH (2010) J Am Chem Soc 132:12550Google Scholar
  29. 29.
    Jin N, Ibrahim M, Spiro TG, Groves JT (2007) J Am Chem Soc 129:12416Google Scholar
  30. 30.
    Liu W, Groves JT (2010) J Am Chem Soc 132:12847Google Scholar
  31. 31.
    Cummins CC, Baxter SM, Wolczanski PT (1988) J Am Chem Soc 110:8731Google Scholar
  32. 32.
    Walsh PJ, Hollander FJ, Bergman RG (1988) J Am Chem Soc 110:8729Google Scholar
  33. 33.
    Cundari TR (1993) Organometallics 12:4971Google Scholar
  34. 34.
    Cundari TR (1994) Organometallics 13:2987Google Scholar
  35. 35.
    Lee SY, Bergman RG (1995) J Am Chem Soc 117:5877Google Scholar
  36. 36.
    Bennett JL, Wolczanski PT (1997) J Am Chem Soc 119:10696Google Scholar
  37. 37.
    Polse JL, Andersen RA, Bergman RG (1998) J Am Chem Soc 120:13405Google Scholar
  38. 38.
    Blake REJ, Antonelli DM, Henling LM, Schaefer WP, Hardcastle KI, Bercaw JE (1998) Organometallics 17:718Google Scholar
  39. 39.
    Cundari TR, Klinckman TR, Wolczanski PT (2002) J Am Chem Soc 124:1481Google Scholar
  40. 40.
    Hoyt HM, Michael FE, Bergman RG (2004) J Am Chem Soc 126:1018Google Scholar
  41. 41.
    Cundari TR, Pierpont AW, Rabaa H (2006) Int J Quantum Chem 106:1611Google Scholar
  42. 42.
    Huh S, Chen H, Wiench JW, Pruski M, Lin VSY (2004) J Am Chem Soc 126:1010Google Scholar
  43. 43.
    Rapp JL, Huang Y, Natella M, Cai Y, Lin VSY, Pruski M (2009) Solid State Nucl Magn Reson 35:82Google Scholar
  44. 44.
    Szajna-Fuller E, Huang Y, Rapp JL, Chaka G, Lin VSY, Pruski M, Bakac A (2009) Dalton Trans 3237Google Scholar
  45. 45.
    Cheng M, Chenoweth K, Oxgaard J, Van Duin A, Goddard WA III (2007) J Phys Chem C 111:5115Google Scholar
  46. 46.
    Goddard WA III, Duin A, Chenoweth K, Cheng M, Pudar S, Oxgaard J, Merinov B, Jang YH, Persson P (2006) Top Catal 38:93Google Scholar
  47. 47.
    Allison JN, Goddard WA III (1985) ACS Symp Ser 279:23Google Scholar
  48. 48.
    Pudar S, Oxgaard J, Chenoweth K, Van Duin ACT, Goddard WA III (2007) J Phys Chem C 111:16405Google Scholar
  49. 49.
    Jang YH, Goddard WA III (2002) J Phys Chem B 106:5997Google Scholar
  50. 50.
    Goddard WA III, Chenoweth K, Pudar S, Duin ACT, Cheng M (2008) Top Catal 50:2Google Scholar
  51. 51.
    Pudar S, Oxgaard J, Goddard WA III (2010) J Phys Chem C 114:15678Google Scholar
  52. 52.
    Energy Information Administration (2010) Electric power monthlyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Suzanne R. Golisz
    • 1
  • T. Brent Gunnoe
    • 1
    Email author
  • William A. GoddardIII
    • 2
  • John T. Groves
    • 3
  • Roy A. Periana
    • 4
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Materials and Process Simulation CenterCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of ChemistryPrinceton UniversityPrincetonUSA
  4. 4.The Scripps Research InstituteJupiterUSA

Personalised recommendations