Catalysis Letters

, Volume 140, Issue 1–2, pp 1–7 | Cite as

Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study

  • Fernando Novio
  • Karine Philippot
  • Bruno Chaudret


The coordination of CO at the surface of very small ruthenium nanoparticles has been investigated by IR and solid state NMR spectroscopies. Two sets of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; PVP) or a ligand (bisdiphenylphosphinobutane; dppb) have been studied in order to evidence any influence of the stabilizer on the location and dynamics of CO molecules at the particles surface. It was found that CO groups are mobile on the surface of the nanoparticles even in the solid state and that bulky ancillary ligands such as dppb may slow down the fluxionality of CO and prevent exchange at certain positions.

Graphical Abstract

Solid state NMR studies evidence the location and mobility of CO adsorbed at the surface of nanoparticles of ruthenium stabilized by PVP whereas nanoparticles of same size but stabilized by a diphosphine ligand do not show such a mobility.


Ruthenium Nanoparticle MAS NMR Ancillary ligands Carbon monoxide IR studies 



The authors are grateful to Y. Coppel and S. Maynadié-Parres for gas phase and MAS NMR analyses. The authors thank CNRS and l’Agence Nationale de la Recherche for funding (ANR-08-BLAN0010-03 SIDERUS project). F. N.V. is grateful to the Ministerio de Ciencia e Innovación from Spanish government for a postdoctoral fellowship (QMC2008-0614).


  1. 1.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589CrossRefGoogle Scholar
  2. 2.
    Humblot F, Didillon D, Lepeltier F, Candy JP, Corker J, Clause O, Bayard F, Basset JM (1998) J Am Chem Soc 120:137CrossRefGoogle Scholar
  3. 3.
    Blaser HU, Studer M (2007) Acc Chem Res 40:1348CrossRefGoogle Scholar
  4. 4.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  5. 5.
    Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) J Am Chem Soc 126:1592CrossRefGoogle Scholar
  6. 6.
    Comprehensive Organometallic Chemistry III Mingos MP and Crabtree RH Editors in chief, Elsevier, Amsterdam, 2007Google Scholar
  7. 7.
    Duncan TM, Zilm KW, Hamilton DM, Root TW (1989) J Phys Chem 93:2583CrossRefGoogle Scholar
  8. 8.
    Bradley JS, Millar JM, Hill EW, Behal S, Chaudret B, Duteil A (1991) Faraday Discuss 92:255CrossRefGoogle Scholar
  9. 9.
    Terrill RH, Postlethwaite TA, Chen CH, Poon CD, Terzis A, Chen A, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS Jr, Samulski ET, Murray RW (1995) J Am Chem Soc 117:12537CrossRefGoogle Scholar
  10. 10.
    Badia A, Gao W, Singh S, Demers L, Cuccia L, Reven L (1996) Langmuir 12:1262CrossRefGoogle Scholar
  11. 11.
    Badia A, Cuccia L, Demers L, Morin F, Lennox RB (1997) J Am Chem Soc 119:2682CrossRefGoogle Scholar
  12. 12.
    Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans MD, Murray RW (1998) Langmuir 14:17CrossRefGoogle Scholar
  13. 13.
    Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) J Am Chem Soc 123:7584CrossRefGoogle Scholar
  14. 14.
    Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bulto AM, Chaudret B (2004) J Organomet Chem 689:4601CrossRefGoogle Scholar
  15. 15.
    Tedsree K, Kong ATS, Tsang SC (2009) Angew Chem Int Ed 48:1443CrossRefGoogle Scholar
  16. 16.
    Organometallic Derived-I: Metals,Colloids and Nanoparticles, Philippot K and Chaudret B, in Comprehensive Organometallic Chemistry III, Crabtree RH & Mingos MP (Eds-in-Chief), Elsevier, Volume 12—Applications III: Functional Materials, Environmental and Biological Applications, Dermot O’Hare (Volume Ed.), 2007, Chapter 12-03, 71Google Scholar
  17. 17.
    Bradley JS, Millar JM, Hill EW, Behal S (1991) J Catal 129:530CrossRefGoogle Scholar
  18. 18.
    Bradley JS, Millar JM, Hill EW (1991) J Am Chem Soc 113:4016CrossRefGoogle Scholar
  19. 19.
    Bradley JS, Hill EW, Behal S, Klein C, Chaudret B, Duteil A (1992) Chem Mater 4:1234CrossRefGoogle Scholar
  20. 20.
    Pery T, Pelzer K, Buntkowsky G, Philippot K, Limbach HH, Chaudret B (2005) Chem Phys Chem 6:605Google Scholar
  21. 21.
    García-Antón J, Axet, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074CrossRefGoogle Scholar
  22. 22.
    Truflandier LA, Del Rosal I, Chaudret B, Poteau R, Gerber IC (2009) Chem Phys Chem 10:2939Google Scholar
  23. 23.
    Dassenoy F, Casanove MJ, Lecante P, Pan C, Philippot K, Chaudret B (2001) Phys Rev B B 63:2354071Google Scholar
  24. 24.
    Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C (1993) Chem Mater 5:341CrossRefGoogle Scholar
  25. 25.
    Eischens RP, Pliskin WA (1958) Adv Catal 10:1CrossRefGoogle Scholar
  26. 26.
    Bradshaw AM, Hoffmann FM (1978) Surf Sci 72:513CrossRefGoogle Scholar
  27. 27.
    Schmid G (ed.) (2004) Nanoparticles. Wiley-VCH, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fernando Novio
    • 1
    • 2
  • Karine Philippot
    • 1
    • 2
  • Bruno Chaudret
    • 1
    • 2
  1. 1.LCC (Laboratoire de Chimie de Coordination)CNRSToulouseFrance
  2. 2.Université de Toulouse, UPS, INPT, LCCToulouseFrance

Personalised recommendations