Catalysis Letters

, Volume 138, Issue 3–4, pp 143–147 | Cite as

Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation

  • Kieran J. Cole
  • Albert F. Carley
  • Mandy J. Crudace
  • Michael Clarke
  • Stuart H. TaylorEmail author
  • Graham J. Hutchings


The addition of gold, by deposition precipitation, to a mixed copper manganese oxide catalyst (Hopcalite) has been studied for ambient temperature carbon monoxide oxidation. The deposition of gold on the catalyst surface enhanced the activity of the Hopcalite. The catalyst containing 1 wt% gold was the most active and showed higher activity than Hopcalite containing 0.5 and 2 wt% gold. It is expected that the introduction of gold will introduce new active sites to the Hopcalite that are associated with the gold nanoparticles. However, gold addition also increased the reducibility of the catalyst significantly compared to unmodified Hopcalite, and the most easily reduced catalyst was the most active, indicating that the lability of lattice oxygen was an important factor influencing activity.

Graphical Abstract

The activity of a copper-manganese oxide catalyst for ambient temperature CO oxidation is significantly promoted by the addition of gold using deposition precipitation.


Hopcalite Carbon monoxide Low temperature oxidation Gold 



We would like to thank Molecular Products and the EPSRC for financial support.


  1. 1.
    Jones HA, Taylor HS (1923) J Phys Chem 27:623CrossRefGoogle Scholar
  2. 2.
    Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1996) Catal Lett 42:21CrossRefGoogle Scholar
  3. 3.
    Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1998) Appl Catal A 166:143CrossRefGoogle Scholar
  4. 4.
    Mirzaei AA, Shaterian HR, Joyner RW, Stockenhuber M, Taylor SH, Hutchings GJ (2003) Catal Commun 4:17CrossRefGoogle Scholar
  5. 5.
    Lamb, Bray WC, Fraser CW (1920) J Ind Chem Eng 12:213CrossRefGoogle Scholar
  6. 6.
    Jones C, Taylor SH, Burrows A, Crudace MJ, Kiely CJ. Hutchings GJ (2008) Chem Commun 1707Google Scholar
  7. 7.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  8. 8.
    Haruta M (1997) J Catal 36:153Google Scholar
  9. 9.
    Solsona B, Hutchings GJ, Garcia T, Taylor SH (2004) New J Chem 28:708CrossRefGoogle Scholar
  10. 10.
    Spassova, Kristova M, Panayotov D, Mehandjiev D (1999) J Catal 185:43CrossRefGoogle Scholar
  11. 11.
    Hodge NA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Catal Today 72:133CrossRefGoogle Scholar
  12. 12.
    Fierro G, Lojacono M, Inversi M, Moretti G, Porta P, Lavecchia P (1992) New Front Catal B 75:1847–1850CrossRefGoogle Scholar
  13. 13.
    Oswald HR, Feitknecht W, Wampetich MJ (1965) Nature 207:72CrossRefGoogle Scholar
  14. 14.
    Rogers TH, Piggot CS, Bahlke WH, Jennings JM (1921) J Am Chem Soc 43:1973CrossRefGoogle Scholar
  15. 15.
    Mars P, van Krevelen DW (1954) Chem Eng Sci 3:41Google Scholar
  16. 16.
    Schwab GM, Kanungo SB (1977) Z Physik Chem N Folge 107:109Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kieran J. Cole
    • 1
  • Albert F. Carley
    • 1
  • Mandy J. Crudace
    • 2
  • Michael Clarke
    • 2
  • Stuart H. Taylor
    • 1
    Email author
  • Graham J. Hutchings
    • 1
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK
  2. 2.Molecular Products LimitedThaxtedUK

Personalised recommendations