Catalysis Letters

, Volume 135, Issue 1–2, pp 62–67 | Cite as

Effect of High Pressure Sulfidation on the Structure of Sulfide Sites of Hydrotreatment Catalysts

  • Laetitia Oliviero
  • Laurence Mariey
  • Marc Antoine Lélias
  • Sébastien Aiello
  • Jacob van Gestel
  • Françoise Maugé


The effect of high-pressure sulfidation on (Co)Mo/Al2O3 catalysts was studied by means of IR spectroscopy of adsorbed CO and thiophene hydrodesulfurization (HDS). A new IR cell, called CellEx, was designed in order to characterize catalysts sulfided in situ under H2S/H2 flow with pressure varying from 0.1 up to 4.0 MPa. On Mo/Al2O3, high sulfidation pressure changes neither the HDS rate nor the MoS2 site concentration. Conversely on CoMo catalyst, sulfidation under high pressure leads to a marked increase of the thiophene HDS activity and of the Co-promoted site concentration as well as to some changes in the local structure of CoMoS sites.

Graphical Abstract

Study of CoMo catalyst, in the new IR cell, CellEX that allows in situ sulfidation under high-pressure, shows that sulfidation pressure increases HDS activity in parallel to the CoMoS concentration.


Hydrotreatment Thiophene HDS IR spectroscopy Carbon monoxide Sulfidation Sulfidation pressure 


  1. 1.
    Prada Silvy R, Grange P, Delanney F, Delmon B (1989) Appl Catal 46:113CrossRefGoogle Scholar
  2. 2.
    Labruyère F, Dufresne P, Breysse M, Lacroix M (1998) Catal Today 43:111CrossRefGoogle Scholar
  3. 3.
    Texier S, Berhault G, Pérot G, Harlé V, Diehl F (2004) J Catal 223:404CrossRefGoogle Scholar
  4. 4.
    Kooyman PJ, Buglass FG, Reinhoudt HR, van Langeveld AD, Hensen EJM, Zandbergen HW, van Veen JAR (2002) J Phys Chem B 106:11795CrossRefGoogle Scholar
  5. 5.
    Dugulan I, Hensen EJM, van Veen JAR (2008) Catal Today 130:126CrossRefGoogle Scholar
  6. 6.
    Koizumi N, Yamazaki M, Hatanaka S, Yamada M (1997) Catal Today 39:33CrossRefGoogle Scholar
  7. 7.
    Gandubert AD, Krebs E, Legens C, Costa D, Guillaume D, Raybaud P (2008) Catal Today 130:149CrossRefGoogle Scholar
  8. 8.
    Gandubert A (2006) PhD thesis, University of LilleGoogle Scholar
  9. 9.
    Shuxian Z, Hall WK, Ertl G, Knözinger H (1986) J Catal 100:167CrossRefGoogle Scholar
  10. 10.
    Peri K (1982) J Phys Chem 86:1615CrossRefGoogle Scholar
  11. 11.
    Delgado E, Fuentes GA, Herman C, Kunzmann G, Knözinger H (1984) Bull Soc Chim Belg 93:735Google Scholar
  12. 12.
    Bachelier J, Tilliette MJ, Cornac M, Duchet JC, Lavalley JC, Cornet D (1984) Bull Soc Chem Belg 93:743Google Scholar
  13. 13.
    Maugé F, Lavalley J-C (1992) J Catal 137:192CrossRefGoogle Scholar
  14. 14.
    Maugé F, Vallet A, Bachelier J, Duchet JC, Lavalley JC (1996) J Catal 162:88CrossRefGoogle Scholar
  15. 15.
    Vogelaar BM, Steiner P, van Langeveld AD, Eijsbouts S, Moulijn JA (2003) Appl Catal 251:85CrossRefGoogle Scholar
  16. 16.
    Lélias MA, Kooyman PJ, Mariey L, Oliviero L, Travert A, van Gestel J, van Veen JAR, Maugé F (2009) J Catal 267:14CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Lélias MA (2008) PhD thesis, University of CaenGoogle Scholar
  19. 19.
    Zaki MI, Knözinger H (1987) Mater Chem Phys 17:201CrossRefGoogle Scholar
  20. 20.
    Travert A, Dujardin C, Maugé F, Veilly E, Cristol S, Paul JF, Payen E (2006) J Phys Chem B 110:1261CrossRefGoogle Scholar
  21. 21.
    Bachelier J, Tilliette MJ, Cornac M, Duchet JC, Lavalley JC, Cornet D (1984) Bull Soc Chim Belg 93(8–9):743Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Laetitia Oliviero
    • 1
  • Laurence Mariey
    • 1
  • Marc Antoine Lélias
    • 1
    • 2
  • Sébastien Aiello
    • 1
  • Jacob van Gestel
    • 1
  • Françoise Maugé
    • 1
  1. 1.Laboratoire Catalyse et Spectrochimie, ENSICAENUniversité de CaenCaenFrance
  2. 2.Axens—Usine de SalindresSalindresFrance

Personalised recommendations