Catalysis Letters

, Volume 130, Issue 3–4, pp 532–540 | Cite as

Water–Gas Shift Reaction over CuO/CeO2 Catalysts: Effect of the Thermal Stability and Oxygen Vacancies of CeO2 Supports Previously Prepared by Different Methods

  • Lei Li
  • Yingying Zhan
  • Qi ZhengEmail author
  • Yuanhui Zheng
  • Chongqi Chen
  • Yusheng She
  • Xingyi Lin
  • Kemei Wei


A series of CuO/CeO2 catalysts were prepared through a two-step process: (1) CeO2 supports were firstly prepared by precipitation (P), hydrothermal (HT) and sol-gel (SG) methods, respectively; and (2) CuO was deposited on the above CeO2 supports by deposition-precipitation method. The as-synthesized CeO2 supports and CuO/CeO2 catalysts were characterized by N2-physisorption, XRD, XPS, Raman, and H2-TPR. The CuO/CeO2 catalysts were examined with respect to their catalytic activity for the water–gas shift reaction, and their catalytic activities are ranked as: CuO/CeO2-P > CuO/CeO2-HT > CuO/CeO2-SG. The results suggest that the CeO2 prepared by precipitation (i.e., CeO2-P-300) has the best thermal stability and the most amounts of surface oxygen vacancies, which make the corresponding CuO/CeO2-P catalyst present the largest pore volume, the smallest crystal size of CuO, the highest microstrain (i.e., the highest surface energy) and the most amounts of active sites (i.e., the moderate copper oxide (crystalline) interacted with surface oxygen vacancies of ceria). Therefore, the catalytic activity of CuO/CeO2 catalysts, in nature, depends on the thermal stability and the number of surface oxygen vacancies of the CeO2 supports previously prepared by different methods.


Water–gas shift reaction CuO/CeO2 Thermal stability Oxygen vacancy CeO2 support Different preparation methods 



The authors acknowledge the financial support from the Department of Science of the People’s Republic of China (20771025), the Department of Science of Fujian Province (2007J0221) and the Department of Science & Technology of Fujian Province (2005H201-2).


  1. 1.
    Trimm DL, Önsan ZI (2001) Catal Rev 43:31CrossRefGoogle Scholar
  2. 2.
    Swartz SL, Seabaugh MM, Holt CT, Dawson WJ (2001) Fuel Cells Bull 4:7CrossRefGoogle Scholar
  3. 3.
    Powell BR, Bloink RL, Eickel CC (1988) J Am Ceram Soc 71:104CrossRefGoogle Scholar
  4. 4.
    Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285CrossRefGoogle Scholar
  5. 5.
    Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481CrossRefGoogle Scholar
  6. 6.
    Duarte de Farias AM, Bargiela P, Rocha MGC, Fraga MA (2008) J Catal 260:93CrossRefGoogle Scholar
  7. 7.
    Duarte de Farias AM, Barandas APMG, Perez RF, Fraga MA (2007) J Power Sources 165:854CrossRefGoogle Scholar
  8. 8.
    Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107CrossRefGoogle Scholar
  9. 9.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935CrossRefGoogle Scholar
  10. 10.
    Sandoval A, Gómez-Cortés A, Zanella R, Díaz G, Saniger JM (2007) J Mol Catal A 278:200CrossRefGoogle Scholar
  11. 11.
    Karpenko A, Leppelt R, Plzak V, Behm RJ (2007) J Catal 252:231CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Zhan YY, Lin XY, Zheng Q (2007) Catal Lett 115:143CrossRefGoogle Scholar
  13. 13.
    Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179CrossRefGoogle Scholar
  14. 14.
    Djinović P, Levec J, Pintar A (2008) Appl Catal A 347:23CrossRefGoogle Scholar
  15. 15.
    Tabakova T, Idakiev V, Papavasiliou J, Avgouropoulos G, Ioannides T (2007) Catal Commun 8:101CrossRefGoogle Scholar
  16. 16.
    Qi X, Flytzani-Stephanopoulos M (2004) Ind Eng Chem Res 43:3055CrossRefGoogle Scholar
  17. 17.
    Li L, Zhan YY, Zheng Q, Zheng YH, Lin XY, Li DL, Zhu JJ (2007) Catal Lett 118:91CrossRefGoogle Scholar
  18. 18.
    She YS, Li L, Zhan YY, Lin XY, Zheng Q, Wei KM (2008) J Rare Earths (accepted for publication)Google Scholar
  19. 19.
    Shen WJ, Ichihashi Y, Matsumura Y (2002) Catal Lett 83:33CrossRefGoogle Scholar
  20. 20.
    Shiau C, Ma MW, Chuang CS (2006) Appl Catal A 301:89CrossRefGoogle Scholar
  21. 21.
    Park JW, Jeong JH, Yoon WL, Jung H, Lee HT, Lee DK, Park YK, Rhee YW (2004) Appl Catal A 274:25CrossRefGoogle Scholar
  22. 22.
    Bera P, Priolkar KR, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Chem Mater 14:3591CrossRefGoogle Scholar
  23. 23.
    Wang X, Rodriguez JA, Hanson JC, Gamarra D, Arias AM, Garcia MF (2006) J Phys Chem B 110:428CrossRefGoogle Scholar
  24. 24.
    Laberty-Robert C, Long JW, Lucas EM, Pettigrew KA, Stroud RM, Doescher MS, Rolison DR (2006) Chem Mater 18:50CrossRefGoogle Scholar
  25. 25.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J PhysChem B 109:24380Google Scholar
  26. 26.
    Zhou KB, Yang ZQ, Yang S (2007) Chem Mater 19:1215CrossRefGoogle Scholar
  27. 27.
    Chang HY, Chen HI (2005) J Cryst Growth 283:457CrossRefGoogle Scholar
  28. 28.
    Scholes FH, Hughes AE, Hardin SG, Lynch P, Miller PR (2007) Chem Mater 19:2321CrossRefGoogle Scholar
  29. 29.
    Gu FB, Wang ZH, Han DM, Shi C, Guo GS (2007) Mater Sci Eng B 139:62CrossRefGoogle Scholar
  30. 30.
    Zhang DS, Fu HX, Shi LY, Pan CS, Li Q, Chu YL, Yu WJ (2007) Inorg Chem 46:2446CrossRefGoogle Scholar
  31. 31.
    Barreca D, Gasparotto A, Maccato C, Maragno C, Tondello E (2006) Langmuir 22:8639CrossRefGoogle Scholar
  32. 32.
    Bondioli F, Bonamartini Corradi A, Leonelli C, Manfredini T (1999) Mater Res Bull 34:2159CrossRefGoogle Scholar
  33. 33.
    Yang HM, Huang CH, Tang AD, Zhang XC, Yang WG (2005) Mater Res Bull 40:1690CrossRefGoogle Scholar
  34. 34.
    Zhou F, Zhao XM, Xu H, Yuan CG (2007) J Phys Chem C 111:1651CrossRefGoogle Scholar
  35. 35.
    Hua JM, Wei KM, Zheng Q, Lin XY (2004) Appl Catal A 259:121CrossRefGoogle Scholar
  36. 36.
    Gamarra D, Munuera G, Hungria AB, Fernández-García M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodríguez JA, Martínez-Arias A (2007) J Phys Chem C 111:11026CrossRefGoogle Scholar
  37. 37.
    Lin XM, Li LP, Li GS, Su WH (2001) Mater Chem Phys 69:236CrossRefGoogle Scholar
  38. 38.
    Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178CrossRefGoogle Scholar
  39. 39.
    Swanson M, Pushkarev VV, Kovalchuk VI, d’Itri JL (2007) Catal Lett 116:41CrossRefGoogle Scholar
  40. 40.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435CrossRefGoogle Scholar
  41. 41.
    Radović M, Dohčević-Mitrović Z, Šćepanović M, Grujić-Brojčin M, Matović B, Bošković S, Popović ZV (2007) Science Sintering 39:281CrossRefGoogle Scholar
  42. 42.
    Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407CrossRefGoogle Scholar
  43. 43.
    Liu ZG, Zhou RX, Zheng XM (2008) Int J Hydrogen Energ 33:791CrossRefGoogle Scholar
  44. 44.
    Strohmeier BR, Leyden DE, Scott Field R, Hercules DM (1985) J Catal 94:514CrossRefGoogle Scholar
  45. 45.
    Ketchik SV, Plyasova LM, Seredkin AE, Kostrov VV, Morozov LN (1980) React Kinet Catal Lett 14:429CrossRefGoogle Scholar
  46. 46.
    Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2005) J Phys Chem B 109:19595CrossRefGoogle Scholar
  47. 47.
    Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884CrossRefGoogle Scholar
  48. 48.
    Jiang XY, Lu GL, Zhou RX, Mao JX, Chen Y, Zheng XM (2001) Appl Surface Sci 173:208CrossRefGoogle Scholar
  49. 49.
    Kasatkin I, Kurr P, Kniep B, Trunschke A, SchlUgl R (2007) Angew Chem Int Ed 46:7324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lei Li
    • 1
  • Yingying Zhan
    • 1
  • Qi Zheng
    • 1
    Email author
  • Yuanhui Zheng
    • 2
  • Chongqi Chen
    • 1
  • Yusheng She
    • 1
  • Xingyi Lin
    • 1
  • Kemei Wei
    • 1
  1. 1.National Engineering Research Center of Chemical Fertilizer CatalystsFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.Materials EngineeringMonash UniversityClaytonAustralia

Personalised recommendations