Regioselective Nitration of Deactivated Mono-Substituted Benzenes Using Acyl Nitrates Over Reusable Acidic Zeolite Catalysts
- 556 Downloads
- 15 Citations
Abstract
Nitration of benzonitrile was investigated using a nitric acid/acid anhydride/zeolite catalyst system under different reaction conditions. Trifluoroacetic and chloroacetic anhydrides were found to be the most active among the anhydrides tried. Also, zeolites Hβ and Fe3+β (Si/Al = 12.5) were found to be the most active catalysts. For example, nitration of benzonitrile with trifluoroacetyl nitrate under reflux conditions in dichloromethane gave 3- and 4-nitrobenzonitriles in quantitative yield, of which the para-isomer represented 24–28%. The yield of para-isomer was improved to 33% when passivated Hβ was used under similar reaction conditions. This is easily the most para-selective nitration of benzonitrile ever recorded. Also, no ortho-isomer was formed under the conditions tried. The zeolite can be easily recovered, regenerated by heating and reused up to six times to give results similar to those obtained with a fresh sample of the catalyst. The nitration system was applied successfully to a range of deactivated mono-substituted benzenes to give para-isomers in significantly higher proportions than in the corresponding traditional nitration reactions.
Graphical Abstract
Keywords
Nitration Deactivated mono-substituted benzenes Acyl nitrate Acidic zeolite catalysis Hβ RegioselectivityNotes
Acknowledgments
We thank Cardiff University and the Saudi Government for financial support.
References
- 1.Olah GA, Malhotra R, Narang SC (1989) Nitration: methods and mechanisms. VCH, New YorkGoogle Scholar
- 2.Schofield K (1980) Aromatic nitration. Cambridge University Press, CambridgeGoogle Scholar
- 3.Taylor R (1990) Electrophilic aromatic substitution. Wiley, ChichesterGoogle Scholar
- 4.Ingold CK (1969) Structure and mechanism in organic chemistry. Bell, LondonGoogle Scholar
- 5.de la Mare PB, Ridd JH (1959) Aromatic substitution: nitration and halogenation. Butterworths, LondonGoogle Scholar
- 6.Gigante B, Prazeres A, Marcelo-Curto M, Cornelis A, Laszlo P (1995) J Org Chem 60:3445CrossRefGoogle Scholar
- 7.Carvalheiro B, Laszlo P, Cornelis A, Marcelo-Curto M (1994) PCT Inc Appl WO 94/19310Google Scholar
- 8.Smith K, Musson A, DeBoos GA (1998) J Org Chem 63:8448CrossRefGoogle Scholar
- 9.Smith K, Musson A, DeBoos GA (1996) Chem Commun 469Google Scholar
- 10.Smith K, Almeer S, Black SJ (2000) Chem Commun 1571Google Scholar
- 11.Smith K, Almeer S, Peters C (2001) Chem Commun 2748Google Scholar
- 12.Smith K, Almeer S, Black SJ, Peters C (2002) J Mater Chem 12:3285CrossRefGoogle Scholar
- 13.Smith K, Ajarim MD, El-Hiti GA (2009) Topics Catal 52:1696CrossRefGoogle Scholar
- 14.Kalbasi RJ, Ghiaci M, Massah AR (2009) Appl Catal A 353:1CrossRefGoogle Scholar
- 15.Kuba MG, Prins R, Pirngruber GD (2007) Appl Catal A 333:24CrossRefGoogle Scholar
- 16.Kuba MG, Prins R, Pirngruber GD (2007) Appl Catal A 333:78CrossRefGoogle Scholar
- 17.Peng X, Suzuki H, Lu C (2001) Tetrahedron Lett 42:4357CrossRefGoogle Scholar
- 18.Hajipour AR, Ruoho AE (2005) Tetrahedron Lett 46:8307CrossRefGoogle Scholar
- 19.Suzuki H, Murashima T (1994) J Chem Soc Perkin Trans 1:903CrossRefGoogle Scholar
- 20.Bak RR, Smallridge AJ (2001) Tetrahedron Lett 42:6767CrossRefGoogle Scholar
- 21.Almog J, Klein A, Sokol A, Sasson Y, Sonenfeld D, Tamiri T (2006) Tetrahedron Lett 47:8651CrossRefGoogle Scholar
- 22.Oxley JC, Smith JL, Moran JS, Canino JN, Almog J (2008) Tetrahedron Lett 49:4449CrossRefGoogle Scholar
- 23.Dove MFA, Manz B, Montgomery J, Pattenden G, Wood SA (1998) J Chem Soc Perkin Trans 1:1589CrossRefGoogle Scholar
- 24.Yuan Y, Nie J, Zhang Z, Wang S (2005) Appl Catal A Gen 295:170CrossRefGoogle Scholar
- 25.Clark JH (2002) Acc Chem Res 35:791CrossRefGoogle Scholar
- 26.Clark JH (ed) (1994) Catalysis of organic reactions using supported inorganic reagents. VCH, New YorkGoogle Scholar
- 27.Delaude L, Laszlo P, Smith K (1993) Acc Chem Res 26:607CrossRefGoogle Scholar
- 28.Smith K (1992) In: Yoshida Z, Ohshiro Y (eds) New aspects of organic synthesis II. Kadonsha, Tokyo and VCH, Weinheim, p 43Google Scholar
- 29.Butters M (1992) In: Smith K (ed) Solid supports and catalysts in organic synthesis. Ellis Harwood, Chichester, p 130Google Scholar
- 30.Smith K (1991) In: Scaros MG, Prunier ML (eds) Catalysis of organic reactions. Marcel Dekker, New York, p 91Google Scholar
- 31.Smith K, El-Hiti GA (2004) Curr Org Synth 1:253CrossRefGoogle Scholar
- 32.Smith K, El-Hiti GA (2006) Curr Org Chem 10:1603CrossRefGoogle Scholar
- 33.Smith K, Roberts SD, El-Hiti GA (2003) Org Biomol Chem 1:1552CrossRefGoogle Scholar
- 34.Smith K, El-Hiti GA, Jayne AJ, Butters M (2003) Org Biomol Chem 1:1560CrossRefGoogle Scholar
- 35.Smith K, El-Hiti GA, Jayne AJ, Butters M (2003) Org Biomol Chem 1:2321CrossRefGoogle Scholar
- 36.Smith K, Ewart GM, El-Hiti GA, Randles KR (2004) Org Biomol Chem 2:3150CrossRefGoogle Scholar
- 37.Smith K, El-Hiti GA, Hammond MEW, Bahzad D, Li Z, Siquet C (2000) J Chem Soc Perkin Trans 1:2745CrossRefGoogle Scholar
- 38.Smith K, Butters M, Paget WE, Goubet D, Fromentin E, Nay B (1999) Green Chem 1:83CrossRefGoogle Scholar
- 39.Smith K, Gibbins T, Millar RW, Claridge RP (2000) J Chem Soc Perkin Trans 1:2753CrossRefGoogle Scholar
- 40.Vogel AI (1989) Vogel’s textbook of practical organic chemistry, 5th edn. Longman, HarlowGoogle Scholar
- 41.Barker SD, Norris RK, Randles D (1981) Aust J Chem 34:1875Google Scholar
- 42.Moodie RB (1982) Organic reaction mechanisms 231Google Scholar
