Advertisement

Catalysis Letters

, Volume 134, Issue 3–4, pp 233–241 | Cite as

Effect of Active Component Contents to Catalytic Performance on Fe-Cu-K/ZSM5 Fischer-Tropsch Catalyst

  • Joo-Young Cheon
  • Suk-Hwan Kang
  • Jong Wook Bae
  • Seon-Ju Park
  • Ki-Won Jun
  • G. Murali Dhar
  • Kwan-Young Lee
Article

Abstract

Fischer-Tropsch Synthesis (FTS) on Fe-Cu-K/ZSM5 catalysts prepared by varying the amount of active components for a given amount of ZSM5 has been investigated to elucidate the effects of iron concentration. The catalysts were prepared by conventional wet impregnation method using ZSM5 and subsequently calcined at 500 °C for 5 h. The different catalytic performance is verified by the variation of microporosity such as surface area and pore size distribution of Fe-Cu-K/ZSM5, acidity, reducibility of active phases and the presence of various crystalline phases like α-Fe2O3, metallic iron and iron carbide. The characterization results are analyzed along with catalytic performance to arrive at optimum amount of active components and to obtain maximum selectivity of FTS products with high conversion of CO during FTS reaction.

Graphical Abstract

Fischer-Tropsch Synthesis (FTS) on Fe-Cu-K/ZSM5 catalysts prepared by varying the amount of active components for a given amount of ZSM5 has been investigated to elucidate the effects of iron concentration. The characterization results are analyzed along with catalytic performance to arrive at optimum amount of active components and to obtain maximum selectivity of FTS products with high conversion of CO during FTS reaction.

Keywords

Fischer-Tropsch synthesis Iron concentration ZSM5 Copper Potassium 

Notes

Acknowledgments

The authors would like to acknowledge funding from the Korea Ministry of Knowledge Economy (MKE) through ‘‘Project of next-generation novel technology development’’ of ITEP. G. Murali Dhar thanks Korea Federation of Science & Technology (KOFST) for the award of the visiting research fellowship under Brain Pool program.

References

  1. 1.
    Dry ME (2002) Catal Today 71:227CrossRefGoogle Scholar
  2. 2.
    Jothimurugesan K, Goodwin JG Jr, Gangwal SK (2004) US Patent 0,220,437 A1Google Scholar
  3. 3.
    Espinoza RL, Jothimurugesan K, Raje AP (2006) US Patent 7,067,562 B2Google Scholar
  4. 4.
    Jin YM, Datye AK (2000) J Catal 196:8CrossRefGoogle Scholar
  5. 5.
    Li SZ, Krishnamoorthy S, Li AW, Meitzner GD, Iglesia E (2002) J Catal 206:202CrossRefGoogle Scholar
  6. 6.
    Kang SH, Bae JW, Sai Prasad PS, Jun KW (2008) Catal Lett 125:264CrossRefGoogle Scholar
  7. 7.
    Bae JW, Parka SJ, Kang SH, Lee YJ, Jun KW, Rhee YW J Ind Chem Eng doi: 10.1016/j.jiec.2009.09.002
  8. 8.
    Park JY, Lee YJ, Jun KW, Bae JW, Viswanadham N, Kim YH J Ind Chem Eng doi: 10.1016/j.jiec.2009.09.011
  9. 9.
    Kang SH, Bae JW, Sai Prasad PS, Park SJ, Woo KJ, Jun KW (2009) Catal Lett 130:630CrossRefGoogle Scholar
  10. 10.
    Kang SH, Bae JW, Woo KJ, Sai Prasad PS, Jun KW Fuel Process Technol doi: 10.1016/j.fuproc.2009.05.023
  11. 11.
    Lee YJ, Park JY, Jun KW, Bae JW, Viswanadham N (2008) Catal Lett 126:149CrossRefGoogle Scholar
  12. 12.
    Bae JW, Potdar HS, Kang SH, Jun KW (2008) Energy Fuels 22:223CrossRefGoogle Scholar
  13. 13.
    Bae JW, Kang SH, Lee YJ, Jun KW (2009) Appl Catal B 90:426CrossRefGoogle Scholar
  14. 14.
    Ning W, Koizumi N, Chang H, Mochizuki T, Itoh T, Yamada M (2006) Appl Catal A 312:35CrossRefGoogle Scholar
  15. 15.
    Shroff MD, Kalakkad DS, Coulter KE, Kohler SD (1995) J Catal 156:185CrossRefGoogle Scholar
  16. 16.
    Lónyi F, Valyon J (2001) Microporous Mesoporous Mater 47:293CrossRefGoogle Scholar
  17. 17.
    Ereña J, Garoña R, Arandes JM, Aguayo AT, Bilbao J (2005) Catal Today 107–108:467CrossRefGoogle Scholar
  18. 18.
    Shen WJ, Chen SS, Yu-Long Z, Lai J, Zhang BJ (1995) J Nat Gas Chem 4:374Google Scholar
  19. 19.
    Zhao G, Zhang C, Qina S, Xiang H, Li Y (2008) J Mol Catal A 286:137CrossRefGoogle Scholar
  20. 20.
    Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405CrossRefGoogle Scholar
  21. 21.
    Wan H, Wu B, An X, Tao Z, Li T, Xiang H, Li Y (2007) Acta Phys Chimi Sin 23(8):1151CrossRefGoogle Scholar
  22. 22.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (eds) (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, MinnesotaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joo-Young Cheon
    • 1
    • 3
  • Suk-Hwan Kang
    • 2
  • Jong Wook Bae
    • 1
  • Seon-Ju Park
    • 1
  • Ki-Won Jun
    • 1
  • G. Murali Dhar
    • 1
  • Kwan-Young Lee
    • 3
  1. 1.Petroleum Displacement Technology Research CenterKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
  2. 2.Plant Engineering CenterInstitute for Advances Engineering (IAE)SuwonKorea
  3. 3.Department of Chemical and Biological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations