Catalysis Letters

, Volume 136, Issue 1–2, pp 35–44 | Cite as

Synthesis of Propylene Carbonate from Carbon Dioxide and Propylene Oxide Using Zn-Mg-Al Composite Oxide as High-efficiency Catalyst



A series of Zn-Al composite oxides that were modified with alkaline earth metals, Zn-M-Al-O (M = Mg, Ca, Sr, and Ba) were fabricated via calcination of the corresponding hydrotalcite precursors, and evaluated as catalysts for the synthesis of propylene carbonate (PC) from CO2 and propylene oxide. Among the Zn-M-Al-O catalysts, Zn-Mg-Al-O (Zn/Mg = 4.0, pH = 10, without hydrothermal treatment) is the best in performance, showing PC selectivity of 99.2% and yield of 88.8% (140 °C, 12 h). Furthermore, the Zn-Mg-Al-O catalyst can be readily reused and recycled without any loss of activity in a test of five cycles. Through detailed studies of the basic nature of the Zn-M-Al-O catalysts, it was found that a moderate basicity (6.1 ≤ H0 < 8.9) is beneficial to the cycloaddition reaction. The NH3- and CO2-TPD results also indicate that the Zn-Mg-Al-O catalyst has acid–base bifunctional properties, and a reaction mechanism is proposed.

Graphic Abstract

Zn-Mg-Al composite oxides were prepared via calcination of the corresponding hydrotalcite precursors, and used as catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide. We achieved high catalytic efficiency under mild conditions, easy separation of catalyst from the product, and good recyclability of the catalyst. A plausible reaction mechanism has been proposed for the catalytic action.


Zn-Mg-Al-O composite oxide Propylene carbonate Propylene oxide Carbon dioxide Heterogeneous catalysis 


  1. 1.
    Sakakura T, Choi JC, Yasuda H (2007) Chem Rev 107:2365CrossRefGoogle Scholar
  2. 2.
    Sakakura T, K Kohno (2009) Chem Commun 1312Google Scholar
  3. 3.
    Dai WL, Luo SL, Yin SF, Au CT (2009) Appl Catal A: Gen 366:2CrossRefGoogle Scholar
  4. 4.
    Lu XB, Zhang YJ, Jin K, Luo LM, Wang H (2004) J Catal 227:537CrossRefGoogle Scholar
  5. 5.
    Jiang JL, Gao FX, Hua RM, Qiu XQ (2005) J Org Chem 70:381CrossRefGoogle Scholar
  6. 6.
    Kim HS, Bae JY, Lee JS, Kwon OS, Jelliarko P, Lee SD, Lee SH (2005) J Catal 232:80CrossRefGoogle Scholar
  7. 7.
    Ion A, Parvulescu V, Jacobs P, Vos DD (2009) Appl Catal A: Gen 363:40CrossRefGoogle Scholar
  8. 8.
    Huang JW, Shi M (2003) J Org Chem 68:6705CrossRefGoogle Scholar
  9. 9.
    Sun J, Wang L, Zhang SJ, Li ZX, Zhang XP, Dai WB, Mori R (2006) J Mol Catal A: Chem 256:295CrossRefGoogle Scholar
  10. 10.
    Kawanami H, Ikushima Y (2000) Chem Commun 2089Google Scholar
  11. 11.
    Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R (2003) Tetrahedron Lett 44:2931CrossRefGoogle Scholar
  12. 12.
    Jiang JL, Hua RM (2006) Synth Commun 36:3141CrossRefGoogle Scholar
  13. 13.
    Sun JM, Fujita SI, Zhao FY, Arai M (2004) Green Chem 6:613CrossRefGoogle Scholar
  14. 14.
    Sun JM, Fujita SI, Arai M (2005) J Orgaomet Chem 690:3490 and references thereinCrossRefGoogle Scholar
  15. 15.
    Wu SS, Zhang XW, Dai WL, Yin SF, Li WS, Ren YQ, Au CT (2008) Appl Catal A: Gen 341:106CrossRefGoogle Scholar
  16. 16.
    Sun J, Ren JY, Zhang SJ, Cheng WG (2009) Tetrahedron Lett 50:423CrossRefGoogle Scholar
  17. 17.
    Bhanage BM, Fujita SI, Ikushima Y, Arai M (2001) Appl Catal A: Gen 219:259CrossRefGoogle Scholar
  18. 18.
    Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T (1997) Chem. Commum 1129Google Scholar
  19. 19.
    Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) J Am Chem Soc 121:4526CrossRefGoogle Scholar
  20. 20.
    Doskocil EJ, Bordawekar SV, Kaye BG, Davis RJ (1999) J Phys Chem B 103:6277CrossRefGoogle Scholar
  21. 21.
    Tu M, Davis RJ (2001) J Catal 199:85CrossRefGoogle Scholar
  22. 22.
    Doskocil EJ (2004) Microporous Mesoporous Mater 76:177CrossRefGoogle Scholar
  23. 23.
    Doskocil EJ (2005) J Phys Chem B 109:2315CrossRefGoogle Scholar
  24. 24.
    Srivastava R, Srinivas D, Ratnasamy P (2003) Catal Lett 91:133CrossRefGoogle Scholar
  25. 25.
    Fujita S, Bhanage BM, Ikushima Y, Shirai M, Torii K, Arai M (2002) Catal Lett 79:95CrossRefGoogle Scholar
  26. 26.
    Lu XB, Xiu JH, He R, Jin K, Luo LM, Feng XJ (2004) Appl Catal A: Gen 275:73CrossRefGoogle Scholar
  27. 27.
    Du Y, Cai F, Kong DL, He LN (2005) Green Chem 7:518CrossRefGoogle Scholar
  28. 28.
    Srivastava R, Srinivas D, Ratnasamy P (2005) J Catal 233:1CrossRefGoogle Scholar
  29. 29.
    Zhang XH, Zhao N, Wei W, Sun YH (2006) Catal Today 115:102CrossRefGoogle Scholar
  30. 30.
    Wang JQ, Yue XD, Cai F, He LN (2007) Catal Commun 8:167CrossRefGoogle Scholar
  31. 31.
    Kovanda F, Koloušek D, Cílovâ Z, Hulínsky V (2005) Appl Clay Sci 28:101CrossRefGoogle Scholar
  32. 32.
    Kim TW, Sahimi M, Tsotsis T (2009) Ind Eng Chem Res 48:5794CrossRefGoogle Scholar
  33. 33.
    Sankar M, Tarte NH, Manikandan P (2004) Appl Catal A: Gen 276:217CrossRefGoogle Scholar
  34. 34.
    Mori K, Mitani Y, Hara T, Mizugaki T, Ebitani K, Kaneda K (2005) Chem Commun 3331Google Scholar
  35. 35.
    Yamanaka T, Tanabe K (1975) J Phys Chem 79:2409CrossRefGoogle Scholar
  36. 36.
    Yamanaka T, Tanabe K (1976) J Phys Chem 80:1723CrossRefGoogle Scholar
  37. 37.
    Oh JM, Hwang SH, Choy JH (2002) Solid State Inoics 151:285CrossRefGoogle Scholar
  38. 38.
    Yasuda H, He LN, Takahashi T, Sakakura T (2006) Appl Catal A: Gen 298:177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringHunan UniversityChangsha, HunanChina
  2. 2.Department of ChemistryHong Kong Baptist UniversityKowloon Tong, Hong KongChina

Personalised recommendations