Catalysis Letters

, 133:307 | Cite as

Mesostructured CeO2 as an Effective Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene

  • Jie Xu
  • Lun-Cun Wang
  • Yong-Mei Liu
  • Yong CaoEmail author
  • He-Yong He
  • Kang-Nian FanEmail author


A new type of mesostructured ceria material was synthesized via template-assisted precipitation method and tested for the oxidative dehydrogenation (ODH) of ethylbenzene to styrene by molecular oxygen. The effect of calcination temperature on the catalytic performances of the ceria catalysts has been investigated. Among the catalysts tested, the CeO2-450 sample derived by calcination at 450 °C exhibited the highest ethylbenzene conversion (34%) and styrene selectivity (87%). Comparing the reaction rates for ODH of ethylbenzene (ca. 6.1 mmol ST g cat −1 h−1 at 450 °C) with the highly active nanostructured carbon-based catalysts in the current literature confirmed the very high activity of these new materials. The superior catalytic performance of the CeO2-450 sample can be attributed to its high specific surface area and enhanced redox properties as revealed by H2-TPR measurements.


Ceria Mesostructured Oxidative dehydrogenation (ODH) Ethylbenzene Styrene 



This work was financially supported by the National Natural Science Foundation of China (20633030, 20721063, 20803012, and 20873026), the National High Technology Research and Development Program of China (2006AA03Z336), and the National Basic Research Program of China (2009CB623506), Science & Technology Commission of Shanghai Municipality (08DZ2270500, 07QH14003) and the Committee of the Shanghai Education (06SG03).


  1. 1.
    Cavani F, Trifiro F (1995) Appl Catal A-Gen 133:219–239CrossRefGoogle Scholar
  2. 2.
    Reddy BM, Rao KN, Reddy GK, Khan A, Park SE (2007) J Phys Chem C 111:18751–18758CrossRefGoogle Scholar
  3. 3.
    Lee E (1973) Catal Rev 8:285–305CrossRefGoogle Scholar
  4. 4.
    Zhao TJ, Sun WZ, Gu XY, Ronning M, Chen D, Dai YC, Yuan WK, Holmen A (2007) Appl Catal A-Gen 323:135–146CrossRefGoogle Scholar
  5. 5.
    Su DS, Maksimova NI, Mestl G, Kuznetsov VL, Keller V, Schlögl R, Keller N (2007) Carbon 45:2145–2151CrossRefGoogle Scholar
  6. 6.
    Kustrowski P, Segura Y, Chmielarz L, Surman J, Dziembaj R, Cool P, Vansant EF (2006) Catal Today 114:307–313CrossRefGoogle Scholar
  7. 7.
    Tagiyev DB, Gasimov GO, Rustamov MI (2005) Catal Today 102–103:197–202CrossRefGoogle Scholar
  8. 8.
    Craciun R, Dulamita N (1999) Ind Eng Chem Res 38:1357–1363CrossRefGoogle Scholar
  9. 9.
    Oganowski W, Hanuza J, Kepiski L (1998) Appl Catal A-Gen 171:145–154CrossRefGoogle Scholar
  10. 10.
    Keller N, Maksimova NI, Roddatis VV, Schur M, Mestl G, Butenko YV, Kuznetsov VL, Schlögl R (2002) Angew Chem Int Ed Engl 41:1885–1888CrossRefGoogle Scholar
  11. 11.
    Delgado JJ, Su DS, Rebmann G, Keller N, Gajovic A, Schlögl R (2006) J Catal 244:126–129CrossRefGoogle Scholar
  12. 12.
    Li P, Li T, Zhou JH, Sui ZJ, Dai YC, Yuan WK, Chen D (2006) Micropor Mesopor Mat 95:1–7CrossRefGoogle Scholar
  13. 13.
    Rinaldi A, Zhang J, Mizera J, Girgsdies F, Wang N, Hamid SBA, Schlögl R, Su DS (2008) Chem Commun 48:6528–6530CrossRefGoogle Scholar
  14. 14.
    Bernal S, Blanco G, Cauqui MA, Corchado MP, Larese C, Pintado JM, Rodriguez-Izquierdo JM (1999) Catal Today 53:607–612CrossRefGoogle Scholar
  15. 15.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367CrossRefGoogle Scholar
  16. 16.
    Trovarelli A, Dolcetti G, Deleitenburg C, Kaspar J, Finetti P, Santoni A (1992) Journal of the Chemical Society-Faraday Transactions 88:1311–1319CrossRefGoogle Scholar
  17. 17.
    Monteiro RS, Dieguez LC, Schmal M (2001) Catal Today 65:77–89CrossRefGoogle Scholar
  18. 18.
    Andreeva D, Ivanov I, Ilieva L, Abrashev MV (2006) Appl Catal A-Gen 302:127–132CrossRefGoogle Scholar
  19. 19.
    Ye XN, Yue YH, Miao CX, Xie ZK, Hua WM, Gao Z (2005) Green Chem 7:524–528CrossRefGoogle Scholar
  20. 20.
    Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ (2007) J Catal 246:52–59CrossRefGoogle Scholar
  21. 21.
    Liu Q, Wang LC, Chen M, Cao Y, He HY, Fan KN (2009) J Catal 263:104–113CrossRefGoogle Scholar
  22. 22.
    Wang YJ, Ma JM, Luo MF, Fang P, He M (2007) J Rare Earths 25:58–62Google Scholar
  23. 23.
    Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G (1998) J Catal 178:299–308CrossRefGoogle Scholar
  24. 24.
    Scire S, Minico S, Crisafulli C, Satriano C, Pistone A (2003) Appl Catal B-Environ 40:43–49CrossRefGoogle Scholar
  25. 25.
    Venezia AM, Pantaleo G, Longo A, Di Carlo G, Casaletto MP, Liotta FL, Deganello G (2005) J Phys Chem B 109:2821–2827CrossRefGoogle Scholar
  26. 26.
    Blank JH, Beckers J, Collignon PF, Rothenberg G (2007) Chemphyschem 8:2490–2497CrossRefGoogle Scholar
  27. 27.
    Giordano F, Trovarelli A, de Leitenburg C, Giona M (2000) J Catal 193:273–282CrossRefGoogle Scholar
  28. 28.
    Bruce LA, Hoang M, Hughes AE, Turney TW (1996) Appl Catal A-Gen 134:351–362CrossRefGoogle Scholar
  29. 29.
    Bautista FM, Campelo JM, Luna D, Marinas JM, Quiros RA, Romero AA (2007) Appl Catal B-Environ 70:611–620CrossRefGoogle Scholar
  30. 30.
    Grasselli RK (2002) Top Catal 21:79–88CrossRefGoogle Scholar
  31. 31.
    Reddy BM, Lakshmanan P, Loridant P, Yamada Y, Kobayashi T, Lopez-Cartes C, Rojas TC, Fernandez A (2006) J Phys Chem B 110:9140–9147CrossRefGoogle Scholar
  32. 32.
    Wang LF, Zhang J, Su DS, Ji YY, Cao XJ, Xiao FS (2007) Chem Mater 19:2894–2897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations