Catalysis Letters

, Volume 130, Issue 3–4, pp 327–334 | Cite as

Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts

  • Y. H. Taufiq-YapEmail author
  • C. K. Goh
  • G. J. Hutchings
  • N. Dummer
  • J. Bartley


The nature and the role of oxygen species and vanadium oxidation states on the activation of n-butane for selective oxidation to maleic anhydride were investigated. Bi–Fe doped and undoped vanadium phosphate catalysts were used a model catalyst. XRD revealed that Bi–Fe mixture dopants led to formation of αII-VOPO4 phase together with (VO)2P2O7 as a dominant phase when the materials were heated in n-butane/air to form the final catalysts. TPR analysis showed that the reduction behaviour of Bi–Fe doped catalysts was dominated by the reduction peak assigned to the reduction of V5+ species as compared to the undoped catalyst, which gave the reduction of V4+ as the major feature. An excess of the oxygen species (O2−) associated with V5+ in Bi–Fe doped catalysts improved the maleic anhydride selectivity but significantly lowering the rate of n-butane conversion. The reactive pairing of V4+-O was shown to be the centre for n-butane activation. It is proposed that the availability and appearance of active oxygen species (O) on the surface of vanadium phosphate catalyst is the rate determining step of the overall reaction.


Vanadium phosphate n-Butane oxidation Vanadium Oxygen species Maleic anhydride Activation 



Financial support from the Malaysian Ministry of Science, Technology and Innovation is gratefully acknowledged.


  1. 1.
    Kung H (1986) Ing Eng Chem Prod Res Dev 25:171CrossRefGoogle Scholar
  2. 2.
    Bordes E, Courtine P (2000) Top Catal 11/12:61CrossRefGoogle Scholar
  3. 3.
    Taufiq-Yap YH, Kamiya Y, Tan KP (2006) J Nat Gas Chem 15:297CrossRefGoogle Scholar
  4. 4.
    Otake M (1982) US Patent 4337173Google Scholar
  5. 5.
    Niwa M, Murakami Y (1982) J Catal 76:9CrossRefGoogle Scholar
  6. 6.
    Taufiq-Yap YH, Goh CK, Waugh KC, Kamiya Y (2005) React Kinet Catal Lett 84:271CrossRefGoogle Scholar
  7. 7.
    Aït-Lachgar K, Abon M, Volta JC (1997) J Catal 171:383CrossRefGoogle Scholar
  8. 8.
    Hiroshi I, Katsuyuki T, Toshio O, Misono M (1993) J Phys Chem 97:7065CrossRefGoogle Scholar
  9. 9.
    Cornaglia LM, Carrara CR, Petunchi JO, Lombardo EA (1999) Appl Catal A: Gen 183:177CrossRefGoogle Scholar
  10. 10.
    Irusta S, Boix A, Pierini B, Caspani C, Petunchi J (1999) J Catal 187:298CrossRefGoogle Scholar
  11. 11.
    Kiely CJ, Burrows A, Sajip S, Hutchings GJ, Sananes MT, Tuel A, Volta JC (1996) J Catal 162:31CrossRefGoogle Scholar
  12. 12.
    Wang X, Xu L, Chen X, Ji W, Yan Q, Chen Y (2003) J Mol Catal A: Chem 206:261CrossRefGoogle Scholar
  13. 13.
    Pierini BT, Lombardo EA (2005) Mater Chem Phys 92:197CrossRefGoogle Scholar
  14. 14.
    Herrmann J-M, Vernoux P, Béré KE, Abon M (1997) J Catal 167:106CrossRefGoogle Scholar
  15. 15.
    Taufiq-Yap YH, Goh CK, Hutchings GJ, Dummer N, Bartley JK (2006) J Mol Catal A: Chem 260:24CrossRefGoogle Scholar
  16. 16.
    Volta JC (2000) CR Acad Sci Paris, Sér IIc Chim/Chem 3:717Google Scholar
  17. 17.
    Abon M, Herrmann JM, Volta JC (2001) Catal Today 71:121CrossRefGoogle Scholar
  18. 18.
    Taufiq-Yap YH, Sakakini BH, Waugh KC (1997) Catal Lett 46:273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. H. Taufiq-Yap
    • 1
    • 2
    Email author
  • C. K. Goh
    • 1
    • 2
  • G. J. Hutchings
    • 3
  • N. Dummer
    • 3
  • J. Bartley
    • 3
  1. 1.Centre of Excellence for Catalysis Science and TechnologyUniversity Putra MalaysiaSerdangMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity Putra MalaysiaSerdangMalaysia
  3. 3.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations