Catalysis Letters

, Volume 127, Issue 3–4, pp 437–443 | Cite as

Anchoring RhCl(CO)(PPh3)2 to –PrPPh2 Modified MCM-41 as Effective Catalyst for 1-Octene Hydroformylation

Article

Abstract

RhCl(CO)(PPh3)2 was anchored to diphenylphosphinopropyl-modified (–PrPPh2) mesoporous silicate MCM-41. Infrared spectroscopy was applied to monitor the multi-step assemble of the complex by assigning critical absorptions. The prepared catalyst was employed in 1-octene hydroformylation and showed high conversion of substrate as well as high selectivity of nonyl aldeydes (>97%) along with several stable catalyst cycles. Rhodium leaching in the reaction liquids was determined by mass spectroscopy, which was found extremely low. The catalyst showed higher activity and lower metal loss than the analogue by nano SiO2 as support, probably as a result of the confining of molecular sieves with ordered pores.

Keywords

Rh–P complex Diphenylphosphinopropyl modification MCM-41 Hydroformylation 1-Octene Leaching 

Notes

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 20673064), Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education of China (2007003108) and Fund for Analysis of Tsinghua University.

References

  1. 1.
    van Koten G, van Leeuwen PWNM (1999) In: van Santen RA, van Leeuwen PWNM, Moulijn JA, Averill RA (eds) Catalysis: an integrated approach, ch 6. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    van Leeuwen PWNM, Claver C (eds) (2000) Rhodium catalyzed hydroformylation. Kluwer, AmsterdamGoogle Scholar
  3. 3.
    Corma A, Garcia H (2006) Adv Synth Catal 348:1391CrossRefGoogle Scholar
  4. 4.
    Peng Q, Yang Y, Yuan Y (2004) J Mol Catal A: Chem 219:175CrossRefGoogle Scholar
  5. 5.
    Huang L, He Y, Kawi S (2004) J Mol Catal A: Chem 213:241CrossRefGoogle Scholar
  6. 6.
    Li P, Kawi S (2008) Catal Today 131:61CrossRefGoogle Scholar
  7. 7.
    Marteel A, Davies JA, Mason MR, Tackb T, Bektesevic S, Abraham MA (2003) Catal Commun 4:309CrossRefGoogle Scholar
  8. 8.
    Reek JNH, Kamer PCJ, Lutz M, Spek AL, van Leeuwen PWNM (1999) Angew Chem Int Ed 38:3231CrossRefGoogle Scholar
  9. 9.
    Honaker MT, Sandefur BJ, Hargett JL, McDaniel AL, Salvatore RN (2003) Tetrahedron Lett 44:8373CrossRefGoogle Scholar
  10. 10.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olsen DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  11. 11.
    Hao X-Y, Zhang Y-Q, Wang J-W, Zhou W, Zhang C, Liu S (2006) Microporous Mesoporous Mater 88:38CrossRefGoogle Scholar
  12. 12.
    Zhang C, Zhou W, Liu S (2005) J Phys Chem B 109:24319CrossRefGoogle Scholar
  13. 13.
    Zhou W, He D (2008) Chem Commun. doi: 10.1039/B812910J
  14. 14.
    Dean J (ed) (1995) Analytical chemistry handbook. McGraw-Hill, Singapore (Sect. 6)Google Scholar
  15. 15.
    Tian B, Liu X, Yu C, Gao F, Luo W, Xie S, Tu B and Zhao D (2002) Chem Commun 1186Google Scholar
  16. 16.
    Bellamy LJ (ed) (1975) The infra-red spectra of complex molecules, ch 20. Chapman and Hall, LondonGoogle Scholar
  17. 17.
    Ning Y (ed) (2000) Characterization of organic compounds and organic spectroscopy, ch 7. The Science Press, BeijingGoogle Scholar
  18. 18.
    Zhao L, Wang S, Wu Y, Hou Q, Wang Y, Jiang S (2007) J Phys Chem C 111:18387CrossRefGoogle Scholar
  19. 19.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouque’rol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  20. 20.
    Evans E, Osborn JA, Wilkinson G (1968) J Chem Soc A 3133Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Innovative Catalysis Program, Key Lab of Organoelectronics and Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations