Catalysis Letters

, Volume 127, Issue 3–4, pp 429–436

Gold/Platinum Bimetallic Core/Shell Nanoparticles Stabilized by a Fréchet-Type Dendrimer: Preparation and Catalytic Hydrogenations of Phenylaldehydes and Nitrobenzenes

  • Wei Zhang
  • Lei Li
  • Yukou Du
  • Xiaomei Wang
  • Ping Yang
Article

Abstract

Au/Pt bimetallic core/shell nanoparticles that were stabilized by polyaryl ether trisacetic acid ammonium chloride dendrons (G3NACl) were synthesized and used as catalysts for the hydrogenation of 3-phenoxybenzaldehyde to 3-phenoxyphenyl methanol and nitrobenzenes to anilines. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy revealed that Au/Pt bimetallic nanoparticles with a 6-nm Au core and average overall diameters of 9.0 ± 2.4 nm, 10.4 ± 2.8 nm, and 13.0 ± 3.2 nm for Au75Pt25@G3NACl, Au50Pt50@G3NACl, and Au25Pt75@G3NACl, respectively, had formed. Au/Pt bimetallic nanoparticles showed higher catalytic activity for the hydrogenation of nitrotoluenes to anilines and 3-phenoxybenzaldehyde to 3-phenoxyphenyl methanol as compared to monometallic platinum nanoparticles and physical mixtures of monometallic Pt and Au nanoparticles. The higher activity of the Au/Pt bimetallic nanoparticles may be attributed to the fact that the gold core attracts electrons from platinum. The electron-deficient platinum shell may favor the adsorption of the substrate with polar carboxyl groups.

Keywords

Au/Pt bimetallic core/shell nanoparticles Fréchet-type dendrimers 3-Phenoxy benzaldehyde Nitrobenzenes Catalytic hydrogenation 

References

  1. 1.
    Alexeev OS, Gates BC (2003) Ind Eng Chem Res 42:1571–1587CrossRefGoogle Scholar
  2. 2.
    Sinfelt J (1987) Acc Chem Res 20:134CrossRefGoogle Scholar
  3. 3.
    Raja R, Thomas JM (2002) J Mol Catal A: Chem 181:3CrossRefGoogle Scholar
  4. 4.
    Johnson BFG, Raynor SA, Brown DB, Shephard DS, Mashmeyer T, Thomas JM, Hermans S, Raja R, Sankar G (2002) J Mol Catal A: Chem 182–183:89CrossRefGoogle Scholar
  5. 5.
    Veisz B, Tóth L, Teschner D, Paál Z, Győrffy N, Wild U, Schlögl R (2005) J Mol Catal A: Chem 238:56CrossRefGoogle Scholar
  6. 6.
    Guczi L, Beck A, Horváth A, Koppány Z, Stefler G, Frey K, Sajó I, Geszti O, Bazin D, Lynch J (2003) J Mol Catal A: Chem 204–205:545CrossRefGoogle Scholar
  7. 7.
    Pronkin SN, Simonov PA, Zaikovskii VI, Savinova ER (2007) J Mol Catal A: Chem 265:141CrossRefGoogle Scholar
  8. 8.
    Chung YM, Rhee HK (2003) J Mol Catal A: Chem 206:291–298CrossRefGoogle Scholar
  9. 9.
    Villa A, Campione C, Prati L (2007) Catal Lett 115:133CrossRefGoogle Scholar
  10. 10.
    Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Appl Catal B Environ 69:115CrossRefGoogle Scholar
  11. 11.
    Scott R, Datye A, Crooks R (2003) J Am Chem Soc 125:1757Google Scholar
  12. 12.
    Lu P, Teranishi T, Asakura K, Miyake M, Toshima N (1999) J Phys Chem B 103:9673CrossRefGoogle Scholar
  13. 13.
    Rampino L, Nord F (1941) J Am Chem Soc 63:2745CrossRefGoogle Scholar
  14. 14.
    Newkome G, Yao Z, Baker GR, Gupta VK (1985) J Org Chem 50:2003CrossRefGoogle Scholar
  15. 15.
    Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638CrossRefGoogle Scholar
  16. 16.
    Niu Y, Yeung L, Crooks R (2001) J Am Chem Soc 123:6840CrossRefGoogle Scholar
  17. 17.
    Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237CrossRefGoogle Scholar
  18. 18.
    Rahim E, Kamounah F, Frederiksen J, Christensen J (2001) Nano Lett 1:499CrossRefGoogle Scholar
  19. 19.
    Gopidas K, Whitesell J, Fox M (2003) Nano Lett 3:1757CrossRefGoogle Scholar
  20. 20.
    Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Macromolecules 33:6042CrossRefGoogle Scholar
  21. 21.
    Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K (2002) Nano Lett 2:999CrossRefGoogle Scholar
  22. 22.
    Zhao M, Crooks R (1998) J Am Chem Soc 120:4877CrossRefGoogle Scholar
  23. 23.
    Bhyrappa P, Young J, Moore J, Suslick K (1996) J Mol Catal A: Chem 113:109CrossRefGoogle Scholar
  24. 24.
    Yang Z, Kang Q, Ma H, Li C, Lei Z (2004) J Mol Catal A: Chem 213:169CrossRefGoogle Scholar
  25. 25.
    Koten G, Jastrzebski J (1999) J Mol Catal A: Chem 146:317CrossRefGoogle Scholar
  26. 26.
    Touzani R, Alper H (2005) J Mol Catal A: Chem 227:197CrossRefGoogle Scholar
  27. 27.
    Huang Y, Zhang H, Deng G, Tang W, Wang X, He Y, Fan Q (2005) J Mol Catal A: Chem 227:91CrossRefGoogle Scholar
  28. 28.
    Mizugaki T, Ooe M, Ebitani K, Kaneda K (1999) J Mol Catal A: Chem 145:329CrossRefGoogle Scholar
  29. 29.
    Smith G, Mapolie S (2004) J Mol Catal A: Chem 213:187CrossRefGoogle Scholar
  30. 30.
    Yi B, Fan Q, Deng G, Li Y, Qiu L, Chan A (2004) Org Lett 6:1361CrossRefGoogle Scholar
  31. 31.
    Du Y, Zhang W, Wang X, Yang P (2006) Catal Lett 107:177CrossRefGoogle Scholar
  32. 32.
    Yang P, Zhang W, Du Y, Wang X (2006) J Mol Catal A: Chem 260:4CrossRefGoogle Scholar
  33. 33.
    Zhang W, Du Y, Hua N, Wang X, Yang P (2006) Chinese J Inorg Chem 22:263Google Scholar
  34. 34.
    Li X, Du Y, Tao J, Wang X, Yang P (2007) Catal Lett 118:151CrossRefGoogle Scholar
  35. 35.
    Ropartz L, Foster DF, Morris RE, Slawin AMZ, Cole-Hamilton DJ (2002) J Chem Soc, Dalton Trans, 1997Google Scholar
  36. 36.
    Tomalia DA, Naylor AM, Goddard WAIII (1990) Angew Chem Int Ed Engl 29:138CrossRefGoogle Scholar
  37. 37.
    Wilson O, Scott R, Garcia-Martinez J, Crooks R (2005) J Am Chem Soc 127:1015–1024CrossRefGoogle Scholar
  38. 38.
    Scott R, Datye A, Crooks R (2003) J Am Chem Soc 125:3708–3709CrossRefGoogle Scholar
  39. 39.
    Chung Y, Rhee H (2003) Catal Lett 85:159–164CrossRefGoogle Scholar
  40. 40.
    Li X, Li B, Cheng M, Du Y, Wang X, Yang P (2008) J Mol Catal A: Chem 284:1–7CrossRefGoogle Scholar
  41. 41.
    Lang H, Maldonado S, Stevenson K, Chandler B (2004) J Am Chem Soc 126:12949–12956CrossRefGoogle Scholar
  42. 42.
    Villa A, Campione C, Prati L (2007) Catal Lett 115:133–136CrossRefGoogle Scholar
  43. 43.
    Scott R, Wilson O, Oh S-K, Kenik E, Crooks R (2004) J Am Chem Soc 126:15583–15591CrossRefGoogle Scholar
  44. 44.
    Shen M, Du YK, Hua NP, Jiang L, Yang P (2006) Powder Technol 162:64–72CrossRefGoogle Scholar
  45. 45.
    Kashchiev D, Rosmalen G (2003) Cryst Res Technol 38:555–574CrossRefGoogle Scholar
  46. 46.
    Gluhoi AC, Vreeburg HS, Bakker JW, Nieuwenhuys BE (2005) Appl Catal A Gen 291:145–150CrossRefGoogle Scholar
  47. 47.
    Schmid G (1992) Chem Rev 92:1709–1727CrossRefGoogle Scholar
  48. 48.
    Liz-Marzan L, Philipse A (1995) J Phys Chem 99:15120–15128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wei Zhang
    • 1
    • 2
  • Lei Li
    • 1
  • Yukou Du
    • 1
  • Xiaomei Wang
    • 1
  • Ping Yang
    • 1
  1. 1.College of Chemistry and Chemical EngineeringSuzhou UniversitySuzhouChina
  2. 2.School of Chemical and Materials EngineeringJiangnan UniversityWuxiChina

Personalised recommendations