Rearrangement of Epoxides to Allylic Alcohols in the Presence of Reusable Basic Resins
Article
First Online:
- 177 Downloads
Abstract
We have modified Merrifield’s resin to provide polymers containing secondary amine groups. Lithiation of the solids gives strongly basic yet poorly nucleophilic resins useful for rearrangement of epoxides to their corresponding allylic alcohols. The resins are easy to handle, non-volatile, non-toxic, and are easily recovered and reused, providing environmental and economic benefits that might have commercial viability.
Keywords
Epoxide Modified basic Merrifield’s resin Rearrangement Allylic alcohols Heterogeneous reactionsNotes
Acknowledgments
We thank the Kuwait Institute for Scientific Research for financial support. G. A. El-Hiti thanks the Royal Society of Chemistry for an International Author Grant.
References
- 1.March J (1992) Advanced organic chemistry, 4th edn. Wiley, New York, ch. 18Google Scholar
- 2.Smith JG (1984) Synthesis 629Google Scholar
- 3.Rao AS, Paknikar SK, Kirtane JG (1983) Tetrahedron 39:2323CrossRefGoogle Scholar
- 4.Parker RE, Isaacs NS (1959) Chem Rev 59:737CrossRefGoogle Scholar
- 5.Crandall JK, Apparu M (1983) Org React 29:345CrossRefGoogle Scholar
- 6.Södergren MJ, Bertilsson SK, Andersson PG (2000) J Am Chem Soc 122:6610CrossRefGoogle Scholar
- 7.Rickborn B (1991) In: Trost BM, Fleming I, Pattenden G (eds) Comprehensive organic synthesis, vol 3. Pergamon Press, Oxford, p 733, ch. 3.3.Google Scholar
- 8.Seki A, Asami M (2002) Tetrahedron 58:4655CrossRefGoogle Scholar
- 9.Johansson A, Abrahamsson P, Davidsson Ö (2003) Tetrahedron Asymmetry 14:1261CrossRefGoogle Scholar
- 10.Bertilsson SK, Södergren MJ, Andersson PC (2002) J Org Chem 67:1567CrossRefGoogle Scholar
- 11.Södergren MJ, Andersson PC (1998) J Am Chem Soc 120:10760CrossRefGoogle Scholar
- 12.Price CC, Carmelite DD (1966) J Am Chem Soc 88:4039CrossRefGoogle Scholar
- 13.Boeckman RK Jr (1977) Tetrahedron Lett 49:4281CrossRefGoogle Scholar
- 14.Crandall JK, Lin L-HC (1968) J Org Chem 33:2375CrossRefGoogle Scholar
- 15.Oxenford SJ, Wright JM, O’Brien P, Panday N, Shipton MR (2005) Tetrahedron Lett 46:8315CrossRefGoogle Scholar
- 16.Malhotra SV (2003) Tetrahedron Asymmetry 14:645CrossRefGoogle Scholar
- 17.Khan AZ-Q, Arvidsson PI, Ahlberg P (1996) Tetrahedron Asymmetry 7:399CrossRefGoogle Scholar
- 18.Crandall JK, Crawley LC (1973) Org Synth 53:17Google Scholar
- 19.Thummel RP, Rickborn B (1970) J Am Chem Soc 92:2064CrossRefGoogle Scholar
- 20.Thummel RP, Rickborn B (1972) J Org Chem 37:3919CrossRefGoogle Scholar
- 21.Yasuda A, Tanaka S, Oshima K, Yamamoto H, Nozaki H (1974) J Am Chem Soc 96:6513CrossRefGoogle Scholar
- 22.Kissel CL, Rickborn B (1972) J Org Chem 37:2060CrossRefGoogle Scholar
- 23.Tierney JP, Alexakis A, Mangeney P (1997) Tetrahedron Asymmetry 8:1019CrossRefGoogle Scholar
- 24.Mordini A, Ben Rayana E, Margot C, Schlosser M (1990) Tetrahedron 46:2401CrossRefGoogle Scholar
- 25.Saravanan P, DattaGupta A, Bhuniya D, Singh VK (1997) Tetrahedron 53:1855CrossRefGoogle Scholar
- 26.Sakurai H, Saski K, Hosomi A (1980) Tetrahedron Lett 21:2329CrossRefGoogle Scholar
- 27.Detty HR (1980) J Org Chem 45:924CrossRefGoogle Scholar
- 28.Scheidl F (1982) Synthesis 728Google Scholar
- 29.Johsi VS, Domodaran NP, Dev S (1968) Tetrahedron 24:5817CrossRefGoogle Scholar
- 30.Eschinasi EH (1970) J Org Chem 35:1598CrossRefGoogle Scholar
- 31.Eschinasi EH, Shaffer GW, Bartels AP (1970) Tetrahedron Lett 3523Google Scholar
- 32.Terao S, Shiraishi M, Kato K (1979) Synthesis 6:467CrossRefGoogle Scholar
- 33.Matsumoto S, Nitta M, Aomura K (1974) Bull Chem Soc Jpn 47:1537CrossRefGoogle Scholar
- 34.Taylor R (1990) Electrophilic aromatic substitution. Wiley, ChichesterGoogle Scholar
- 35.Clark JH (ed) (1995) Chemistry of waste minimisation. Chapman and Hall, LondonGoogle Scholar
- 36.Clark JH (2002) Acc Chem Res 35:791CrossRefGoogle Scholar
- 37.Smith K (1991) In: Scaros MG, Prunier ML (eds) Catalysis of organic reactions. Marcel Dekker, New York, p 91Google Scholar
- 38.Smith K, El-Hiti GA (2004) Curr Org Synth 1:253CrossRefGoogle Scholar
- 39.Smith K, El-Hiti GA (2006) Curr Org Chem 10:1603CrossRefGoogle Scholar
- 40.Smith K, Roberts SD, El-Hiti GA (2003) Org Biomol Chem 1:1552CrossRefGoogle Scholar
- 41.Smith K, El-Hiti GA, Jayne AJ, Butters M (2003) Org Biomol Chem 1:1560CrossRefGoogle Scholar
- 42.Smith K, El-Hiti GA, Jayne AJ, Butters M (2003) Org Biomol Chem 1:2321CrossRefGoogle Scholar
- 43.Smith K, Ewart GM, El-Hiti GA, Randles KR (2004) Org Biomol Chem 2:3150CrossRefGoogle Scholar
- 44.Smith K, El-Hiti GA, Hammond MEW, Bahzad D, Li Z, Siquet C (2000) J Chem Soc Perkin Trans 1:2745CrossRefGoogle Scholar
- 45.Smith K, Butters M, Paget WE, Goubet D, Fromentin E, Nay B (1999) Green Chem 1:83CrossRefGoogle Scholar
- 46.Smith K, Gibbins T, Millar RW, Claridge RP (2000) J Chem Soc Perkin Trans 1:2753CrossRefGoogle Scholar
- 47.Smith K, Almeer S, Black SJ, Peters C (2002) J Mater Chem 12:3285CrossRefGoogle Scholar
- 48.Smith K, El-Hiti GA, Al-Shamali M (2006) Catl Lett 109:77CrossRefGoogle Scholar
- 49.Watson SC, Eastham JF (1967) J Organomet Chem 9:165CrossRefGoogle Scholar
- 50.A I Vogel (1989) Vogel’s textbook of practical organic chemistry, 5th ed. Longman, Harlow Google Scholar
- 51.Perrin DD, Armarego WLF (1988) In: Purification of laboratory chemicals, 3rd ed. Pergamon, OxfordGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2008