Advertisement

Catalysis Letters

, Volume 127, Issue 3–4, pp 339–347 | Cite as

Macroporous Monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 Catalysts Used for Preferential Oxidation of CO

  • Yuan Zhang
  • Cun Yu Zhao
  • Hao Liang
  • Yuan LiuEmail author
Article

Abstract

Macro-porous monolithic γ-Al2O3 was prepared by using macro-porous polystyrene monolith foam as the template and alumina sol as the precursor. Platinum and potassium were loaded on the support by impregnation method. TG, XRD, N2 adsorption–desorption, SEM, TEM, and TPR techniques were used for catalysts characterization, and the catalytic performance of macro-porous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts were tested in hydrogen-rich stream for CO preferential oxidation (CO-PROX). SEM images show that the macropores in the macro-porous monolithic γ-Al2O3 are interconnected with the pore size in the range of 10 to 50 μm, and the monoliths possess hierarchical macro-meso(micro)-porous structure. The macro-porous monolithic catalysts, although they are less active intrinsically than the particle ones, exhibit higher CO conversion and higher O2 to CO oxidation selectivity than particle catalysts at high reaction temperatures, which is proposed to be owing to its hierarchical macro-meso(micro) -porous structure. Adding potassium lead to marked improvement of the catalytic performance, owing to intrinsic activity and platinum dispersion increase resulted from K-doping. CO in hydrogen-rich gases can be removed to 10 ppm over monolithic K–Pt/γ-Al2O3 by CO-PROX.

Keywords

Monolith Macropore Preferential oxidation Platinum Potassium Alumina 

Notes

Acknowledgments

The financial support of this work by Hi-tech Research and Development Program of China (863 program, Granted as No. 2006AA05Z115 and 2007AA05Z104) and the Cheung Kong Scholar Program for Innovative Teams of the Ministry of Education (No IRT0641) are gratefully acknowledged.

References

  1. 1.
    Ghenciu AF (2002) Curr Opin Solid State Mater Sci 6:389CrossRefGoogle Scholar
  2. 2.
    Song C (2002) Catal Today 77:17CrossRefGoogle Scholar
  3. 3.
    Trimm DL (2005) Appl Catal A Gen 296:1CrossRefGoogle Scholar
  4. 4.
    Kuriyama M, Tanaka H, Ito S, Kubota T, Miyao T, Naito S, Tomishge K, Kunimori K (2007) J Catal 252:39CrossRefGoogle Scholar
  5. 5.
    Tanaka H, Kuriyama M, Ishida Y, Ito S, Tomishige K, Kunimori K (2008) Appl Catal A Gen 343:117CrossRefGoogle Scholar
  6. 6.
    Tanaka H, Kuriyama M, Shida Y, Ito S, Tomishige K, Kunimori K (2008) Appl Catal A Gen 343:125CrossRefGoogle Scholar
  7. 7.
    Chin P, Sun X, Roberts GW, Spivey JJ (2006) Appl Catal A Gen 302:22CrossRefGoogle Scholar
  8. 8.
    Roberts GW, Chin P, Sun X, Spivey JJ (2003) Appl Catal B Environ 46:601CrossRefGoogle Scholar
  9. 9.
    Srinivas S, Dhingra A, Im H, Gulari E (2004) Appl Catal A Gen 274:285CrossRefGoogle Scholar
  10. 10.
    Ayastuy JL, Gonzalez-Marcos MP, Gonzalez-Velasco JR, Gutiérrez-Ortiz MA (2007) Appl Catal B Environ 70:532CrossRefGoogle Scholar
  11. 11.
    Ko EY, Park ED, Lee HC, Kim S (2007) Angew Chem Int Ed 46:734CrossRefGoogle Scholar
  12. 12.
    Suh DJ, Kwak C, Kim JH, Kwin SM, Park TJ (2005) J Power Sources 142:70CrossRefGoogle Scholar
  13. 13.
    Chang LH, Sasirekha N, Chen YW, Wang WJ (2006) Ind Eng Chem Res 45:4927CrossRefGoogle Scholar
  14. 14.
    Avgouropoulos G, Papavasiliou J, Tabakova T, Iakiev V, Ioannides T (2006) Chem Eng J 124:41CrossRefGoogle Scholar
  15. 15.
    Liu Y, Fu Q, Stephanopoulos MF (2005) Catal Today 93–95:241Google Scholar
  16. 16.
    Papavasiliou J, Avgouropoulos G, Ioannides T (2006) Appl Catal B Environ 66:168CrossRefGoogle Scholar
  17. 17.
    Guo Q, Liu Y (2008) Appl Catal B Environ 82:19CrossRefGoogle Scholar
  18. 18.
    Mariño F, Descorme C, Duprez D (2004) Appl Catal B Environ 54:59Google Scholar
  19. 19.
    Kolb G, Hessel V, Cominos V, Hofmann C, Löwe H, Nikolaidis G, Zapf R, Ziogas A, Delsman ER, de Croon MHJM, Schouten JC, de la Iglesia O, Mallada R, Santamaria J (2007) Catal Today 120:2CrossRefGoogle Scholar
  20. 20.
    Ouyang X, Besser RS (2005) J Power Sources 141:39CrossRefGoogle Scholar
  21. 21.
    Guliants VV, Carreon MA, Lin YS (2004) J Membrane Sci 235:53CrossRefGoogle Scholar
  22. 22.
    Chen SL, Dong P, Xu K, Qi Y, Wang D (2007) Catal Today 125:143CrossRefGoogle Scholar
  23. 23.
    Tan Q, Bao X, Song T, Fan Y, Shi G, Shen B, Liu C, Gao X (2007) J Catal 251:69CrossRefGoogle Scholar
  24. 24.
    Somma F, Strukul G (2006) Catal Lett 107:73CrossRefGoogle Scholar
  25. 25.
    Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Chem Mater 19:3393CrossRefGoogle Scholar
  26. 26.
    Hwang CP, Ye CT (1996) J Mol Catal A Chem 112:295CrossRefGoogle Scholar
  27. 27.
    Vantomme A, Léonard A, Yuan ZY, Su BL (2007) Colloids Surf A Physicochem Eng Aspects 300:70CrossRefGoogle Scholar
  28. 28.
    Nijhuis TA, Beers AEW, Vergunst T, Hoek I, Kapteijin F, Moulijn JA (2001) Catal Rev 43:345CrossRefGoogle Scholar
  29. 29.
    Yao HC, Sieg M, Plummer HK Jr (1979) J Catal 59:365CrossRefGoogle Scholar
  30. 30.
    Lee CH, Chen YW (1997) Ind Eng Chem Res 36:1498CrossRefGoogle Scholar
  31. 31.
    Kolb G, Hessel V (2004) Chem Eng J 98:1CrossRefGoogle Scholar
  32. 32.
    Zeng SH, Liu Y, Wang YQ (2007) Catal Lett 117:119CrossRefGoogle Scholar
  33. 33.
    Zeng SH, Liu Y (2008) Appl Surf Sci 254:4879CrossRefGoogle Scholar
  34. 34.
    Kin KY, Han J, Nam SW, Kim TH, Lee HI (2008) Catal Today 131:431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Department of Catalysis Science and Technology, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations