Catalysis Letters

, Volume 127, Issue 1–2, pp 126–131 | Cite as

Potassium Promotion of Cobalt Spinel Catalyst for N2O Decomposition—Accounted by Work Function Measurements and DFT Modelling

  • Filip Zasada
  • Pawel Stelmachowski
  • Gabriela Maniak
  • Jean-Francois Paul
  • Andrzej Kotarba
  • Zbigniew Sojka
Article

Abstract

The beneficial effect (decrease of the half conversion temperature by 100 °C) of potassium doping, in the range of 0–5 atoms/nm2, on N2O decomposition over Co3O4 was analyzed by work function measurements and DFT calculations. The optimal potassium surface loading was found to be 1.8 atoms/nm2. The effect was explained in terms of electronic promotion gauged by lowering of the catalyst work function by 0.48 eV (for K2CO3 precursor) and 0.44 eV (for KOH). The promotional effect is discussed in relation to the theoretical and experimental surface dipoles determined from Hirshfeld atomic charges and geometry of the postulated potassium adspecies and from the Topping model, respectively.

Keywords

Cobalt spinel Potassium promoter N2O decomposition Work function Dipole moment DFT 

References

  1. 1.
    Pérez-Ramírez J, Kapteijn F, Schöffel K, Moulijn JA (2003) Appl Catal B 44:117CrossRefGoogle Scholar
  2. 2.
    Kondratenko EV, Pérez-Ramírez J (2007) Catal Today 121:197CrossRefGoogle Scholar
  3. 3.
    Kapteijn F, Rodriguez-Mirasol J, Moulij JA (1996) Appl Catal B 9:25Google Scholar
  4. 4.
    Lunsford JH (1975) The Catalytic Chemistry of Nitrogen Oxides. Plenum, New YorkGoogle Scholar
  5. 5.
    Haber J, Machej T, Janas J, Nattich M (2004) Catal Today 90:15CrossRefGoogle Scholar
  6. 6.
    Haber J, Nattich M, Machej T (2008) Appl Catal B 77:278CrossRefGoogle Scholar
  7. 7.
    Russo N, Mescia D, Fino D, Saracco G, Speccia V (2007) Ind Eng Chem Res 46:4226CrossRefGoogle Scholar
  8. 8.
    Obalona L, Fila V (2007) Appl Cat B 70:353CrossRefGoogle Scholar
  9. 9.
    Abu-Zied BM, Schwieger W, Unger A (2008) Appl Catal B. doi:10.1016/j.apcatb.2008.04.004
  10. 10.
    Kondratenko EV, Kondratenko VA, Santiago M, Perez-Ramírez J (2008) J Catal 256:248CrossRefGoogle Scholar
  11. 11.
    Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B 46:473CrossRefGoogle Scholar
  12. 12.
    Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Appl Catal B 78:242CrossRefGoogle Scholar
  13. 13.
    Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145CrossRefGoogle Scholar
  14. 14.
    Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A 146:255CrossRefGoogle Scholar
  15. 15.
    Yan L, Ren T, Wang X, Ji D, Suo J (2003) Appl Catal B 45:85CrossRefGoogle Scholar
  16. 16.
    Yan L, Ren T, Wang X, Gao Q, Ji D, Suo J (2003) Catal Commun 4:505CrossRefGoogle Scholar
  17. 17.
    Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2005) Catal Commun 6:329CrossRefGoogle Scholar
  18. 18.
    Xue L, Zhang C, He H, Teraoka Y (2007) Catal Today 126:449CrossRefGoogle Scholar
  19. 19.
    Somorjai GA (1994) Introduction to Surface Chemistry and Catalysis. New York, WileyGoogle Scholar
  20. 20.
    Kotarba A, Adamski G, Piskorz W, Sojka Z, Sayag C, Djega-Mariadassou GJ (2004) Phys Chem B 108:2885CrossRefGoogle Scholar
  21. 21.
    Benedek NA, Snook IK, Latham K, Yarovsky IJ (2005) J Chem Phys 122:144102CrossRefGoogle Scholar
  22. 22.
    DMol3 User Guide (2003) Accelrys Inc., San Diego, CAGoogle Scholar
  23. 23.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  24. 24.
    Fisher TH, Almlof J (1992) J Phys Chem 96:9768CrossRefGoogle Scholar
  25. 25.
    Chang KS, Song H, Park Y-S, Woo J-W (2004) Appl Catal A: General 273:223CrossRefGoogle Scholar
  26. 26.
    Brison J, Mine N (2007) Surf Sci 601:1467CrossRefGoogle Scholar
  27. 27.
    Verhoef RW, Asscher M (1997) Surf Sci 391:11CrossRefGoogle Scholar
  28. 28.
    Wang L, Maxish T, Ceder G (2006) Phys Rev B 73:195107CrossRefGoogle Scholar
  29. 29.
    Tang X, Li J, Hao J (2007) Mater Res Bull. doi:10.1016/j.materresbull.2007.12.009
  30. 30.
    Xu R, Chun-Zeng H (2003) J Phys Chem B 107:926CrossRefGoogle Scholar
  31. 31.
    Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Catal Today 137:418CrossRefGoogle Scholar
  32. 32.
    Scagnelli A, Valentin CD, Pacchioni G (2006) Surf Sci 600:386CrossRefGoogle Scholar
  33. 33.
    De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Filip Zasada
    • 1
  • Pawel Stelmachowski
    • 1
  • Gabriela Maniak
    • 1
  • Jean-Francois Paul
    • 2
  • Andrzej Kotarba
    • 1
  • Zbigniew Sojka
    • 1
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland
  2. 2.Unité de Catalyse et Chimie du Solide UMR 8181Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations