Catalysis Letters

, Volume 126, Issue 3–4, pp 268–274 | Cite as

Effect of TiO2–Al2O3 Sol–Gel Supports on the Superficial Ni and Mo Species in Oxidized and Sulfided NiMo/TiO2–Al2O3 Catalysts: Influence on Dibenzothiophene Hydrodesulfurization

  • A. GuevaraEmail author
  • A. Alvarez
  • M. Vrinat


The present work presents a comparative study of NiMo catalysts supported on sol–gel TiO2–Al2O3 mixed oxides with 5 and 95 mol% content of Al2O3. The DRX and N2 physisorption results showed that the sol–gel method allows preparation of TiO2–Al2O3 mixed oxides possessing high superficial area and an amorphous TiO2 structure. Results of ζ-potential showed that the net surface pH of the supports depends on their structure and composition. According to UV–Vis and Raman spectra obtained from the solids after impregnation, catalysts with high content of Al2O3 showed Mo7O24 2− and Mo8O26 4− species displaying Mo–O–Mo stretching vibration modes. On the other hand, catalysts with high content of TiO2 showed Mo7O24 2− and Mo8O26 4− species with vibration modes corresponding to terminal Mo=Ot bonds. Therefore, it appears that impregnation of catalysts with a pH 9 solution allows a polymerization process of MoO4 2− and [Ni2+4O2−] solution species to Mo8O26 4− and Mo7O24 2− species with a close interaction with [Ni2+6O2−] species. However, these species have low interaction with the support. Thus, composition of the support appears to be more important than net surface pH in order to obtain a better distribution of superficial Mo species. XPS results suggest a higher proportion of “NiMoS” phase on the TiO2 rich support. The most active catalyst in the dibenzothiophene hydrodesulfurization was NiMo/TiO2–Al2O3 with 5 mol% Al2O3. This suggests that Mo7O24 2− and Mo8O26 4− in combination with [Ni2+6O2−] species produce a better Ni/(Ni + Mo) ratio and NiMoS phase.


TiO2–Al2O3 sol–gel Hydrodesulfurization Raman UV–Vis diffuse reflectance ζ-Potential 



The authors thank Scientific Cooperation Program CONACYT(Mexico)–CNRS(France) for financial support.


  1. 1.
    Macaud M, Milenkovic A, Schulz E, Lemaire M, Vrinat M (2000) J Catal 193:255–263CrossRefGoogle Scholar
  2. 2.
    Meille V, Schulz E, Vrinat M (1999) Appl Catal A: Gen 187:179–186CrossRefGoogle Scholar
  3. 3.
    Topsøe H, Clasusen BS, Massot FE (1996) Hydrotreating catalysis: science and technology. Springer, BerlinGoogle Scholar
  4. 4.
    Topsøe H, Clausen BS, Topsøe N-Y, Zeuthen P (1990) Stud Surf Sci Catal 53:77CrossRefGoogle Scholar
  5. 5.
    Hensen EJM, de Beer VJH, van Veen JAR, van Santen RA (2002) Catal Lett 84:59–67CrossRefGoogle Scholar
  6. 6.
    Coulier L, van Veen JAR, Niemantsverdriet JW (2002) Catal Lett 79:149–155CrossRefGoogle Scholar
  7. 7.
    Araki Y, Honna K, Shimada H (2002) J Catal 207:361–370CrossRefGoogle Scholar
  8. 8.
    Shimada H (2003) Catal Today 86:17–29CrossRefGoogle Scholar
  9. 9.
    Sakashita Y (2001) Surf Sci 489:45–58CrossRefGoogle Scholar
  10. 10.
    Van Veen JAR, Hendriks PAJM (1986) Polyhedron 5:75–78CrossRefGoogle Scholar
  11. 11.
    Ramirez J, Fuentes S, Diaz G, Vrinat M, Breysse M, Lacroix M (1989) Appl Catal 52:211–224Google Scholar
  12. 12.
    McVicker JB, Ziemiak JJ (1985) J Catal 95:473–481CrossRefGoogle Scholar
  13. 13.
    Foger K, Anderson JR (1986) Appl Catal A: Gen 23:139–155CrossRefGoogle Scholar
  14. 14.
    Stranick A, Houalla M, Hercules DM (1990) J Catal 125:214–226CrossRefGoogle Scholar
  15. 15.
    Wei ZB, Xin Q, Guo XX (1992) Catal Lett 15:255–261CrossRefGoogle Scholar
  16. 16.
    Ramirez J, Ruiz-Ramirez L, Cedeno L, Harle V, Vrinat M, Breysse M (1993) Appl Catal A: Gen 93:163–180CrossRefGoogle Scholar
  17. 17.
    International Centre for Diffraction Data (1993) Mineral power diffraction file: JCPDS. Pennsylvania, USAGoogle Scholar
  18. 18.
    Rohrer GS (2004) Structure and bonding in crystalline materials. Academic Press, Cambridge, pp 123–125Google Scholar
  19. 19.
    Hunter RJ (1981) Zeta potential in colloid science: principles and applications. In: Ottewill RH, Rowell RL (eds) Colloid science series. Academic, LondonGoogle Scholar
  20. 20.
    Parks AG (1965) Chem Rev 65:177–195CrossRefGoogle Scholar
  21. 21.
    Spevac PA, McIntyre NS (1993) J Phys Chem 97:11020–11030CrossRefGoogle Scholar
  22. 22.
    Kim DS, Segawa K, Soeya T, Wachs IE (1992) J Catal 136:539–553CrossRefGoogle Scholar
  23. 23.
    Hu H, Bare SR, Wachs IE (1995) J Phys Chem 99:10897–10910CrossRefGoogle Scholar
  24. 24.
    Deo G, Wachs IE (1991) J Phys Chem 95:5889–5895CrossRefGoogle Scholar
  25. 25.
    Kasztelan S, Payen E, Toulhoat H, Grimblot J, Bonnelle JP (1986) Polyhedron 5:157–167CrossRefGoogle Scholar
  26. 26.
    Blanchard P, Lamonier C, Griboval A, Payen E (2007) Appl Catal A: Gen 322:33–45CrossRefGoogle Scholar
  27. 27.
    Lever AB (1984) Inorganic electronic spectroscopy, 2nd edn. In: Studies in physical theoretical chemistry, vol 33. Elsevier, Amsterdam, pp 507–711Google Scholar
  28. 28.
    Jacono ML, Sachiavello M, Cimino A (1971) J Phys Chem 75:1044–1050CrossRefGoogle Scholar
  29. 29.
    Iova F, Trutia A (2000) Opt Mater 13:455–458CrossRefGoogle Scholar
  30. 30.
    Lepetit C, Che M (1996) J Phys Chem 100:3137–3143CrossRefGoogle Scholar
  31. 31.
    Guevara-Lara A, Bacaud R, Vrinat M (2007) Appl Catal A: Gen 328:99–108CrossRefGoogle Scholar
  32. 32.
    Li CP, Hercules DM (1984) J Phys Chem 88:456CrossRefGoogle Scholar
  33. 33.
    Houssenbay S, Kasztelan S, Toulhoat H, Bonnelle JP, Grimblot J (1989) J Phys Chem 93:7176–7180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de HidalgoPachucaMexico
  2. 2.Institut de Recherches sur la Catalyse et de l’Environnent de LyonCNRSVilleurbanne CedexFrance

Personalised recommendations