Catalysis Letters

, Volume 125, Issue 3–4, pp 177–182 | Cite as

Enantiospecific Adsorption of (R)-3-Methylcyclohexanone on Naturally Chiral Cu(531) R&S Surfaces

  • Ye Huang
  • Andrew J. GellmanEmail author


The enantiospecific adsorption and desorption of (R)-3-methylcyclohexanone on naturally chiral Cu(531) R&S surfaces was studied using temperature programmed desorption. The Cu(531) R&S surfaces are of interest because they lie at the center of the stereographic triangle and thus, have the highest density of chiral adsorption sites possible on the surface of a face centered cubic metal. Several (R)-3-methylcyclohexanone desorption features were resolved in the TPD spectra from Cu(531) R&S surfaces and were assigned to desorption of molecules from terrace, step, and kink sites. The peaks associated with (R)-3-methylcyclohexanone desorbing from the R- and S-kink sites differed in temperature by 2.2 ± 0.6 K. This corresponds to an enantiospecific difference in the desorption energies of 0.5 ± 0.2 kJ/mol, with a preference for adsorption of (R)-3-methylcyclohexanone at the S-kinks on the Cu(531) S surface.


Chiral Enantioselective Enantiospecific Surface High Miller index Copper 



The authors would like to acknowledge support from the US DOE through grant number DE-FG02-03ER15472.


  1. 1.
    Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107:4863–4890CrossRefGoogle Scholar
  2. 2.
    McCague RAS (1999) Applications of crystallization technology in chiral synthesis. Innov Pharm Technol 99:100–104Google Scholar
  3. 3.
    Francotte E (1996) An essential and versatile tool in the research and in the development of bioactive compounds. Chim Nouv 14:1541Google Scholar
  4. 4.
    Lorenzo MO, Baddeley CJ, Muryn C, Raval R (2000) Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404:376–378CrossRefGoogle Scholar
  5. 5.
    Parschau M, Romer S, Ernst KH (2004) Induction of homochirality in achiral enantiomorphous monolayers. J Am Chem Soc 126(47):15398–15399CrossRefGoogle Scholar
  6. 6.
    Izumi Y (1983) Modified raney-nickel (MRNI) catalyst—heterogeneous enantio-differentiating (asymmetric) catalyst. Adv Catal 32:215–271CrossRefGoogle Scholar
  7. 7.
    Baiker A (1997) Progress in asymmetric heterogeneous catalysis: design of novel chirally modified platinum metal catalysts. J Mol Catal A-Chem 115(3):473–493CrossRefGoogle Scholar
  8. 8.
    Sholl DS, Asthagiri A, Power TD (2001) Naturally chiral metal surfaces as enantiospecific adsorbents. J Phys Chem B 105(21):4771–4782CrossRefGoogle Scholar
  9. 9.
    McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on ‘‘chiral’’ metal surfaces. Langmuir 12(10):2483–2487CrossRefGoogle Scholar
  10. 10.
    Horvath JD, Gellman AJ (2002) Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J Am Chem Soc 124(10):2384–2392CrossRefGoogle Scholar
  11. 11.
    Rampulla DM, Francis AJ, Knight KS, Gellman AJ (2006) Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S. J Phys Chem B (submitted for publication)Google Scholar
  12. 12.
    Zhao XY, Perry SS, Horvath JD, Gellman AJ (2004) Adsorbate induced kink formation in straight step edges on Cu(533) and Cu(221). Surf Sci 563(1–3):217–224CrossRefGoogle Scholar
  13. 13.
    Gellman AJ, Horvath JD, Buelow MT (2001) Chiral single crystal surface chemistry. J Mol Catal A-Chem 167(1–2):3–11CrossRefGoogle Scholar
  14. 14.
    Horvath JD, Gellman AJ (2001) Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J Am Chem Soc 123(32):7953–7954CrossRefGoogle Scholar
  15. 15.
    Zhao XY, Perry SS (2004) Ordered adsorption of ketones on Cu(643) revealed by scanning tunneling microscopy. J Mol Catal A (in press)Google Scholar
  16. 16.
    Kamakoti P, Horvath J, Gellman AJ, Sholl DS (2004) Titration of chiral kink sites on Cu(643) using iodine adsorption. Surf Sci 563(1–3):206–216CrossRefGoogle Scholar
  17. 17.
    Rampulla DM, Gellman AJ (2006) Enantioselective decomposition of chiral alkyl bromides on Cu(643)R&S: effects of moving the chiral center. Surf Sci (to be submitted)Google Scholar
  18. 18.
    van Hove MA, Somorjai GA (1980) New microfacet notation for high-Miller-index surfaces of cubic materials with terrace, step, and kink structures. Surf Sci 92(2–3):489–518CrossRefGoogle Scholar
  19. 19.
    Jenkins SJ, Pratt SJ (2007) Beyond the surface atlas: a roadmap and gazetteer for surface symmetry and structure. Surf Sci Rep 62(10):373–429CrossRefGoogle Scholar
  20. 20.
    Baber AE, Gellman AJ, Sholl DS, Sykes ECH (2008) The real structure of naturally chiral Cu(643). J Phys Chem C (in press)Google Scholar
  21. 21.
    Asthagiri A, Feibelman PJ, Sholl DS (2002) Thermal fluctuations in the structure of naturally chiral Pt surfaces. Top Catal 18(3–4):193–200CrossRefGoogle Scholar
  22. 22.
    Power TD, Asthagiri A, Sholl DS (2002) Atomically detailed models of the effect of thermal roughening on the enantiospecificity of naturally chiral platinum surfaces. Langmuir 18(9):3737–3748CrossRefGoogle Scholar
  23. 23.
    Puisto SR, Held G, King DA (2005) Energy-dependent cancellation of diffraction spots due to surface roughening. Phys Rev Lett 95(3):036102CrossRefGoogle Scholar
  24. 24.
    Puisto SR, Held G, Ranea V, Jenkins SJ, Mola EE, King AA (2005) The structure of the chiral Pt(531) surface: a combined LEED and DFT study. J Phys Chem B 109(47):22456–22462CrossRefGoogle Scholar
  25. 25.
    Gladys MJ, Stevens AV, Scott NR, Jones G, Batchelor D, Held G (2007) Enantiospecific adsorption of alanine on the chiral Cu(531) surface. J Phys Chem C 111:8331–8336CrossRefGoogle Scholar
  26. 26.
    Horvath JD, Baker L, Gellman AJ (2008) Enantiospecific orientation of R-3-Methylcyclohexanone on the chiral Cu(643)(R/S) surfaces. J Phys Chem C 112(20):7637–7643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.National Energy Technology LaboratoryU.S. Department of EnergyPittsburghUSA

Personalised recommendations