Catalysis Letters

, Volume 125, Issue 3–4, pp 229–235 | Cite as

Spatially-Resolved Calorimetry: Using IR Thermography to Measure Temperature and Trapped NOX Distributions on a NOX Adsorber Catalyst

  • Khurram Aftab
  • Jasdeep Mandur
  • Hector Budman
  • Neal W. Currier
  • Aleksey Yezerets
  • William S. Epling


Spatial- and time-resolved temperature distributions over a Pt/Ba/Al2O3 model NOX storage/reduction (NSR) catalyst were measured using infra-red thermography. The heat generated during regeneration was correlated to surface nitrate reduction, thereby revealing the concentration of surface nitrates at specific locations along the catalyst. The results demonstrate that there is more nitrate formation at upstream positions relative to downstream, or from front to back of the catalyst, with short trapping times. However, as more NOX was trapped on the catalyst during longer trapping times, it was found that the largest amount of NOX was trapped slightly downstream of the inlet, evolving to a local maximum in amount trapped. Applying infrared (IR) thermography to this system resulted in a spatially resolved calorimetry method via the correlation of temperature to the distribution of sorbed nitrate species along the catalyst.


NOX storage NOX reduction Lean NOX traps Infra-red thermography Vehicle emissions Spatially resolved calorimetry 



The authors would like to thank the Natural Sciences and Engineering Research Council of Canada and Cummins Inc. for funding of this work. We would also like to thank Johnson Matthey for supplying the samples used in this study.


  1. 1.
    Miyoshi N, Matsumoto S, Katoh K, Tanaka T, Harada J, Takahashi N, Yokota K, Sgiura M, Kasahara K, SAE Technical Paper Series 950809Google Scholar
  2. 2.
    Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) Catal Today 27:63CrossRefGoogle Scholar
  3. 3.
    Brogan M, Brisley R, Walker A, Webster D, Boegner W, Fekete N, Kramer M, Krutzsch B, Voigtlander D, SAE Technical Paper Series 952490Google Scholar
  4. 4.
    Epling W, Campbell L, Yezerets A, Currier N, Parks J (2004) Catal Rev 46:163CrossRefGoogle Scholar
  5. 5.
    Huff S, West B, Parks J, Swartz M, Green J, Graves R, SAE Technical Paper Series 2006-01-1416Google Scholar
  6. 6.
    West B, Huff S, Parks J, Lewis S, Choi JS, Partridge W, Storey J, SAE Technical Paper Series 2004-01-3023Google Scholar
  7. 7.
    Partridge W, Storey J, Smithwick R, Devault G, Cunningham M, Currier N, Yonushonis T, SAE Technical Paper Series 2000-01-2952Google Scholar
  8. 8.
    Kong Y, Crane S, Patel P, Taylor B, SAE Technical Paper Series 2004-01-0582Google Scholar
  9. 9.
    Mahzoul H, Brilhac J, Gilot P (1999) Appl Catal B Environ 20:47CrossRefGoogle Scholar
  10. 10.
    Amberntsson A, Fridell E, Skoglundh M (2003) Appl Catal B Environ 46:429CrossRefGoogle Scholar
  11. 11.
    Abdulhamid H, Fridell E, Skoglundh M (2006) Appl Catal B Environ 62:319CrossRefGoogle Scholar
  12. 12.
    Theis J, Ura J, Goralski C, Jen H, Thanasiu E, Graves Y, Takami A, Yamada H, Miyoshi S, SAE Technical Paper Series 2003-01-1160Google Scholar
  13. 13.
    Ji Y, Toops T, Crocker M (2007) Catal Lett 119:257CrossRefGoogle Scholar
  14. 14.
    Choi JS, Partridge WP, Daw CS (2005) Appl Catal A Gen 293:24CrossRefGoogle Scholar
  15. 15.
    Choi JS, Partridge WP, Epling WS, Currier NW, Yonushonis TM (2006) Catal Today 114:102CrossRefGoogle Scholar
  16. 16.
    Epling WS, Yezerets A, Currier NW (2006) Catal Lett 110:143CrossRefGoogle Scholar
  17. 17.
    Salasc S, Skoglundh M, Fridell E (2002) Appl Catal B Environ 36:145CrossRefGoogle Scholar
  18. 18.
    Mahzoul H, Brilhac JF, Gilot P (1999) Appl Catal B Environ 20:47CrossRefGoogle Scholar
  19. 19.
    Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) J Phys Chem B 105:12732CrossRefGoogle Scholar
  20. 20.
    Kobayashi T, Yamada T, Kayano K, SAE Technical Paper Series 970745Google Scholar
  21. 21.
    Fridell E, Persson H, Westerberg B, Olsson L, Skoglundh M (2000) Catal Lett 66:71CrossRefGoogle Scholar
  22. 22.
    Kikuyama S, Matsukuma I, Kikuchi R, Sasaki K, Eguchi K (2002) Appl Catal A Gen 226:23CrossRefGoogle Scholar
  23. 23.
    Laurent F, Pope C, Mahzoul H, Delfosse L, Gilot P (2003) Chem Eng Sci 58:1793CrossRefGoogle Scholar
  24. 24.
    Schmitz P, Baird R (2002) J Phys Chem B 106:4172CrossRefGoogle Scholar
  25. 25.
    Kromer BR, Cao L, Cumaranatunge L, Mulla SS, Ratts JL, Yezerets A, Currier NW, Ribeiro FH, Delgass N, Caruthers JM, accepted for publication in Catal TodayGoogle Scholar
  26. 26.
    Mulla SS, Chen N, Cumaranatunge L, Blau GE, Zemlyanov DY, Delgass N, Epling WS, Ribeiro FH (2006) J Catal 241:389CrossRefGoogle Scholar
  27. 27.
    Despres J, Elsener M, Koebel M, Kroecher O, Schnyder B, Wokaun A (2004) Appl Catal B Environ 50:73CrossRefGoogle Scholar
  28. 28.
    Olsson L, Westerberg B, Persson H, Fridell E, Skoglundh M, Andersson B (1999) J Phys Chem B 103:10433CrossRefGoogle Scholar
  29. 29.
    Crocoll M, Kureti S, Weisweiler W (2005) J Catal 229:480CrossRefGoogle Scholar
  30. 30.
    Guthenke A, Chatterjee D, Weibel M, Walduber N, Koci P, Marek M, Kubicek M (2007) Chem Eng Sci 62:5357CrossRefGoogle Scholar
  31. 31.
    Olsson L, Blint R, Fridell E (2005) Ind Eng Chem Res 44:3021CrossRefGoogle Scholar
  32. 32.
    Schmeiber V, Tuttlies U, Eigenberger G (2007) Top Catal 42–43:77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Khurram Aftab
    • 1
  • Jasdeep Mandur
    • 1
  • Hector Budman
    • 1
  • Neal W. Currier
    • 2
  • Aleksey Yezerets
    • 2
  • William S. Epling
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Cummins Inc., MC 50321ColumbusUSA

Personalised recommendations