Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

New Data on the Orito Reaction: Effect of Substrate Structure on Nonlinear Phenomenon

Abstract

The nonlinear phenomenon (NLP) was studied for the first time in the enantioselective hydrogenation of ethyl pyruvate (EP) and ketopantolactone (KPL) under identical conditions, on Pt catalyst modified by quinine and cinchonine, and for comparison with cinchonidine-cinchonine pair. The data obtained using the three methods allowed recognition of a new observation, namely that the NLP depends not only on the chiral modifier but also on the substrate to be hydrogenated. This observation can presumably be interpreted on the basis of differences in the structure of the substrate-modifier complexes formed and in the adsorption-desorption processes of the complexes, thus the NLP is not solely dependent on the adsorption of cinchona alkaloids, as suggested by earlier experimental data.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    (a) Izumi Y (1971) Angew Chem Int Ed Engl 10:871; (b) Izumi Y (1983) Adv Catal 32:215; (c) Bartók M, Wittmann Gy, Göndös Gy, Smith GV (1987) J Org Chem 52:1139; (d) Wittmann Gy, Bartók GB, Bartók M, Smith GV (1990) J Mol Catal 60:1; (e) Osawa T, Harada T, Takayasu O (2006) Curr Org Chem 10:1513

  2. 2.

    (a) Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 8:1118; (b) Orito Y, Imai S, Niwa S, Hung NG (1979) J Synth Org Chem 37:173

  3. 3.

    (a) von Arx M, Bürgi T, Mallat T, Baiker A (2002) Chem Eur J 8:1430; (b) Künzle N, Szabo A, Schürch M, Wang G, Mallat T, Baiker A (1998) Chem Commun 1377; (c) von Arx M, Mallat T, Baiker A (2001) Tetrahedron: Asymmetr 12:3089

  4. 4.

    (a) Török B, Balázsik K, Szöllösi Gy, Felföldi K, Bartók M (1999) Chirality 11:470; (b) Balázsik K, Szöri K, Felföldi K, Török B, Bartók M (2000) Chem Commun 555; (c) Balázsik K, Bartók M (2004) J Catal 224:463; (d) Török B, Balázsik K, Török M, Szöllösi Gy, Bartók M (2000) Ultrason Sonochem 7:151

  5. 5.

    (a) Blaser HU, Garland M, Jallet HP (1993) J Catal 144:569; (b) Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727; (c) Török B, Felföldi K, Balázsik K, Bartók M (1999) Chem Commun 1725; (d) Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253

  6. 6.

    (a) Baiker A (2005) Catal Today 100:159; (b) Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175; (c) Hutchings GJ (2005) Ann Rev Mat Res 35:143

  7. 7.

    (a) Bartók M (2006) Curr Org Chem 10:1533; (b) Klabunovskii E, Smith GV, Zsigmond Á (2006) Heterogeneous enantioselective hydrogenation, Springer, Dordrecht; (c) Blaser HU, Studer M (2007) Accounts Chem Res 40:1348; (d) Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

  8. 8.

    (a) Simons KE, Meheux PA, Ibbotson A, Wells PB (1993) Stud Surf Sci Catal 75:2317; (b) Simons KE, Meheux PA, Griffiths SP, Sutherland IM, Johnston P, Wells PB, Carley AF, Rajumon MK, Roberts MW, Ibbotson A (1994) Recl Trav Chim Pays-Bas 113:465; (c) Nitta Y, Shibata A (1998) Chem Lett 2:161; (d) Balazs L, Mallat T, Baiker A (2005) J Catal 233:327

  9. 9.

    (a) Ma Z, Zaera F (2006) J Am Chem Soc 128:16414; (b) Ma Z, Lee I, Zaera F (2007) J Am Chem Soc 129:16083

  10. 10.

    (a) Bartók M, Sutyinszki M, Balázsik K, Szöllősi Gy (2005) Catal Lett 100:161; (b) Bartók M, Sutyinszki M, Bucsi I, Felföldi K, Szöllősi Gy, Bartha F, Bartók T (2005) J Catal 231:33; (c) Balázsik K, Szöllősi Gy, Bartók M (2008) Catal Lett DOI: 10.1007/s10562-008-9498-1

  11. 11.

    (a) Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301; (b) Balázsik K, Török B, Felföldi K, Bartók M (1999) Ultrason Sonochem 5:149; (c) Bartók M, Szöllősi Gy, Balázsik K, Bartók T (2002) J Mol Catal A:Chem 177:299

  12. 12.

    Thales Nanotechnology H-Cube™ flow hydrogenator, see http://www.thalesnano.com

  13. 13.

    (a) Saaby S, Knudsen KR, Ladlow M, Ley SV (2005) Chem Commun 23:2909; (b) Desai B, Kappe CO (2005) J Comb Chem 7:641; (c) Jones RV, Godorhazy L, Varga N, Szalai D, Urge L, Darvas F (2006) J Comb Chem 8:110

  14. 14.

    (a) Szöllősi Gy, Hermán B, Fülöp F, Bartók M (2006) React Kinet Catal Lett 88:391; (b) Hermán B, Szöllősi Gy, Fülöp F, Bartók M (2007) Appl Catal A:Gen 331:39

  15. 15.

    (a) Bartók M, Bartók T, Szöllösi Gy, Felföldi K (1999) Catal Lett 61:57; (b) Bartók M, Szabó PT, Bartók T, Szöllösi Gy (2000) Rapid Commun Mass Spectrom 14:509

  16. 16.

    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

  17. 17.

    Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68

  18. 18.

    (a) Huck WR, Bürgi T, Mallat T, Baiker A (2003) J Catal 216:276; (b) Huck WR, Mallat T, Baiker A (2003) Catal Lett 87:241

  19. 19.

    Balázsik K, Bucsi I, Cserényi Sz, Szöllősi Gy, Bartók M (2008) J Mol Catal A:Chem 280:87

  20. 20.

    (a) Diezi S, Szabó A, Mallat T, Baiker A (2003) Tetrahedron: Asymmetr 14:2573; (b) Diezi S, Mallat T, Szabó A, Baiker A (2004) J Catal 228:162

  21. 21.

    (a) Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266; (b) Martinek TA, Varga T, Balázsik K, Szöllősi Gy, Fülöp F, Bartók M (2008) J Catal 255:296

  22. 22.

    (a) Fache F, Valot F, Lemaire M (2001) In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis, Wiley, Weinheim; (b) Notheisz F, Bartók M, Ostgard D, Smith GV (1986) J Catal 101:212; (c) Molnár Á, Bucsi I, Bartók M, Resofszki G, Gáti Gy (1991) J Catal 129:303; (d) Mastalir Á, Király Z, Szöllősi Gy, Bartók M (2000) J Catal 194:146

  23. 23.

    (a) Berkessel A, Gröger H (2005) Asymmetric organocatalysis, Wiley-VCH, Weinheim; (b) Enders D, Balensiefer T (2004) Acc Chem Res 37:534; (c) Houk KN, List B (2004) Acc Chem Res 37:487; (d) Dalko PI, Moisan L (2004) Angewandte Chem Int Ed 43:5138; (e) Szöllősi Gy, London G, Baláspiri L, Somlai Cs, Bartók M (2003) Chirality 15:S90

  24. 24.

    (a) Ferri D, Bürgi T (2001) J Am Chem Soc 123:12074; (b) Kubota J, Zaera F (2001) J Am Chem Soc 123:11115; (c) Chu W, LeBlanc RJ, Williams CT (2002) Catal Commun 3:547; (d) Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113

  25. 25.

    (a) Bonalumi N, Vargas A, Ferri D, Burgi T, Mallat T, Baiker A (2005) J Am Chem Soc 127:8467; (b) Kraynov A, Suchopar A, D’Souza L, Richards R (2006) Phys Chem Chem Phys 8:1321; (c) Wahl M, von Arx M, Jung TA, Baiker A (2006) J Phys Chem B 110:21777

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant T 048764, K 72065) is highly appreciated. G. S. thanks the Hungarian Academy of Sciences for the award of Bolyai János scholarship.

Author information

Correspondence to Mihály Bartók.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balázsik, K., Cserényi, S., Szöllősi, G. et al. New Data on the Orito Reaction: Effect of Substrate Structure on Nonlinear Phenomenon. Catal Lett 125, 401–407 (2008). https://doi.org/10.1007/s10562-008-9576-4

Download citation

Keywords

  • Asymmetric hydrogenation
  • Platinum
  • Cinchona alkaloids
  • Nonlinear phenomenon
  • Ketopantolactone
  • Ethyl pyruvate